A Real-Time, Non-Contact Method for In-Line Inspection of Oil and Gas Pipelines Using Optical Sensor Array
<p>Complete procedure of the proposed method: (<b>a</b>) schematic picture of the optical sensor working principle and (<b>b</b>) the built circuit diagram.</p> "> Figure 2
<p>Schematic of the optical sensor array housing system; (<b>a</b>) side view and top view of the 2-D optical sensor array system, (<b>b</b>) photographs of a side view and the optical sensor array system.</p> "> Figure 3
<p>The specimens for the experimental studies with dimensions and three different types of corrosion. (<b>a</b>) deposit and cavity corrosions, (<b>b</b>) uniform corrosion</p> "> Figure 3 Cont.
<p>The specimens for the experimental studies with dimensions and three different types of corrosion. (<b>a</b>) deposit and cavity corrosions, (<b>b</b>) uniform corrosion</p> "> Figure 4
<p>Schematic diagram of the self-designed experimental setup with interconnections.</p> "> Figure 5
<p>Picture of the self-designed laboratory testbed with different parts of the optical sensor array housing system, rack and pinion mechanism and the segmented pipeline.</p> "> Figure 6
<p>The records acquired sensor signals in the presence of deposit corrosion for 20-mm lift-off and 2.9 mm/s; (<b>a</b>) original time-domain sensor signal, (<b>b</b>) corresponding distance sensor signal.</p> "> Figure 7
<p>At each level of decompositions: (<b>a</b>) signal to noise ratio (SNR) values, (<b>b</b>) root mean square error (RMSE) values.</p> "> Figure 8
<p>Approximation and detailed coefficients of the sensor signal at 2.9 mm/s.</p> "> Figure 9
<p>De-noised acquired sensor signal for deposit corrosion defects scanned at 2.9 mm/s for 20-mm lift-off; (<b>a</b>) time-domain sensor signal, (<b>b</b>) corresponding distance signal.</p> "> Figure 10
<p>Discrete wavelet transform (DWT) de-noised sensor signals at different inspection speeds at the third decomposing level for 20-mm lift-off; (<b>a</b>) 7.3 mm/s, (<b>b</b>) 11 mm/s and, (<b>c</b>) 13 mm/s.</p> "> Figure 11
<p>Percentage of error length at different inspection speeds for the different lift-offs; (<b>a</b>) 20-mm lift-off and, (<b>b</b>) 30-mm lift-off.</p> "> Figure 12
<p>Peak voltage corresponding to the height of deposit corrosion defects for different lift-offs at different inspection speeds; (<b>a</b>) 20 mm and, (<b>b</b>) 30 mm.</p> "> Figure 13
<p>De-noised distance sensor signal for cavity corrosion defects scanned at 2.9 mm/s and 20-mm lift-off.</p> "> Figure 14
<p>De-noised distance sensor signal for uniform corrosion defects with various widths at 2.9 mm/s and 20-mm lift-off.</p> "> Figure 15
<p>Images of the field test for in-line application; (<b>a</b>) gas transporting pipeline, (<b>b</b>) the designed PIG.</p> "> Figure 16
<p>The results for the real-world application using the proposed method; (<b>a</b>) photo of the pipeline joint, (<b>b</b>) output voltage of the sensor for the whole pipe inspection, (<b>c</b>) 2D image of the scanned pipeline with zoomed abnormality area at a location between 70 m and 80 m.</p> "> Figure 16 Cont.
<p>The results for the real-world application using the proposed method; (<b>a</b>) photo of the pipeline joint, (<b>b</b>) output voltage of the sensor for the whole pipe inspection, (<b>c</b>) 2D image of the scanned pipeline with zoomed abnormality area at a location between 70 m and 80 m.</p> ">
Abstract
:1. Introduction
2. The Method
2.1. Background and Working Principle
2.2. Design of the Optical Sensor Array System
3. Experimental Studies
3.1. Specimen Description
3.2. Experimental Setup and Procedure
3.3. Discrete Wavelet Transforms for Sensor Signal De-Noising
3.4. Evaluation of Sensor Signal De-Noising
4. Results and Discussion
4.1. Optimization of the Parameters and Damage Detection
4.2. Cavity Corrosion Detection
4.3. Uniform Corrosion Detection
4.4. Feasibility Test for Real-World Application
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ogai, H.; Bhattacharya, B. Pipe Inspection Robots for Structural Health and Condition Monitoring; Springer: Kanpur, India, 2018. [Google Scholar]
- Kar, S.K. Grid development key to India’s natural gas market growth. Oil Gas J. 2018, 116, 58–61. [Google Scholar]
- Glisic, B. Sensing solutions for assessing and monitoring pipeline systems. In Sensor Technologies for Civil Infrastructures; Woodhead Publishing: Cambridge, UK, 2014; pp. 422–460. [Google Scholar]
- Vilkys, T.; Rudzinskas, V.; Prentkovskis, O.; Tretjakovas, J.; Višniakov, N.; Maruschak, P. Evaluation of failure pressure for gas pipelines with combined defects. Metals 2018, 8, 346. [Google Scholar] [CrossRef]
- Adegboye, M.A.; Fung, W.-K.; Karnik, A. Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies: Principles and Approaches. Sensors 2019, 19, 2548. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Wang, Y.; Zhang, P.; Qin, G. Non-Probabilistic Time-Varying Reliability-Based Analysis of Corroded Pipelines Considering the Interaction of Multiple Uncertainty Variables. Energies 2019, 12, 1965. [Google Scholar] [CrossRef]
- James, B.; Hudgins, A. Failure analysis of oil and gas transmission pipelines. In Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry; Elsevier: Berkeley, CA, USA, 2016; pp. 1–38. [Google Scholar]
- Ilman, M. Analysis of internal corrosion in subsea oil pipeline. Case Stud. Eng. Fail. Anal. 2014, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ossai, C.I.; Boswell, B.; Davies, I.J. Pipeline failures in corrosive environments—A conceptual analysis of trends and effects. Eng. Fail. Anal. 2015, 53, 36–58. [Google Scholar] [CrossRef]
- Vanaei, H.; Eslami, A.; Egbewande, A. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models. Int. J. Press. Vessels Pip. 2017, 149, 43–54. [Google Scholar] [CrossRef]
- Amaya-Gómez, R.; Sánchez-Silva, M.; Bastidas-Arteaga, E.; Schoefs, F.; Muñoz, F. Reliability assessments of corroded pipelines based on internal pressure–A review. Eng. Fail. Anal. 2019, 98, 190–214. [Google Scholar] [CrossRef]
- Koch, G. Trends in Oil and Gas Corrosion Research and Technologies. Trends Oil Gas Corros. Res. Technol. 2017, 1, 1–857. [Google Scholar]
- Dey, P.K. Analytic hierarchy process analyzes risk of operating cross-country petroleum pipelines in India. Nat. Hazard. Rev. 2003, 4, 213–221. [Google Scholar] [CrossRef]
- Dey, P.K.; Ogunlana, S.O.; Naksuksakul, S. Risk-based maintenance model for offshore oil and gas pipelines: A case study. J. Qual. Maintenance Eng. 2004, 10, 169–183. [Google Scholar] [CrossRef]
- Hovey, D.; Farmer, E. Liquid Pipeline Accident Statistics and Failure Rates. In Proceedings of the Pipeline Monitoring and Rehabilitation Seminar, Houston, TX, USA, 12–16 January 1994. [Google Scholar]
- Kishawy, H.A.; Gabbar, H.A. Review of pipeline integrity management practices. Int. J. Press. Vessels Pip. 2010, 87, 373–380. [Google Scholar] [CrossRef]
- Witek, M. Gas transmission pipeline failure probability estimation and defect repairs activities based on in-line inspection data. Eng. Fail. Anal. 2016, 70, 255–272. [Google Scholar] [CrossRef]
- Tiratsoo, J.N. Pipeline Pigging Technology; Gulf Professional Publishing: Cranfield, UK, 1992. [Google Scholar]
- Xie, M.; Tian, Z. A review on pipeline integrity management utilizing in-line inspection data. Eng. Fail. Anal. 2018, 92, 222–239. [Google Scholar] [CrossRef]
- Afzal, M.; Udpa, S. Advanced signal processing of magnetic flux leakage data obtained from seamless gas pipeline. NDT E Int. 2002, 35, 449–457. [Google Scholar] [CrossRef]
- Salama, M.M.; Nestleroth, B.J.; Maes, M.A.; Dash, C. Characterization of the Uncertainties in the Inspection Results of Ultrasonic Intelligent Pigs. In Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 9–14 June 2013. [Google Scholar]
- Hirao, M.; Ogi, H. An SH-wave EMAT technique for gas pipeline inspection. NDT E Int. 1999, 32, 127–132. [Google Scholar] [CrossRef]
- Nestleroth, J.B.; Davis, R.J. Application of eddy currents induced by permanent magnets for pipeline inspection. NDT E Int. 2007, 40, 77–84. [Google Scholar] [CrossRef]
- LiYing, S.; YiBo, L.; LiBo, S.; LingGe, L. Comparison of Magnetic Flux Leakage (MFL) and Acoustic Emission (AE) techniques in corrosion inspection for pressure pipelines. In Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 5375–5378. [Google Scholar]
- Lynch, A.J. Magnetic flux leakage robotic pipe inspection: Internal and external methods. Master’s Thesis, Rice University, Houston, TX, USA, 2009. [Google Scholar]
- Yang, L.; Zhang, G.; Liu, G.; Gao, S. Effect of lift-off on pipeline magnetic flux leakage inspection. In Proceedings of the 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 October 2008; pp. 25–28. [Google Scholar]
- Reber, K.; Beller, M.; Willems, H.; Barbian, O.A. A new generation of ultrasonic in-line inspection tools for detecting, sizing and locating metal loss and cracks in transmission pipelines. In Proceedings of the 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; pp. 665–671. [Google Scholar]
- Zhang, Y.; Zheng, M.; An, C.; Seo, J.K.; Pasqualino, I.P.; Lim, F.; Duan, M. A review of the integrity management of subsea production systems: Inspection and monitoring methods. Ships Offshore Struct. 2019, 13, 1–15. [Google Scholar] [CrossRef]
- Barbian, A.; Beller, M. In-line inspection of high pressure transmission pipelines: State-of-the-art and future trends. In Proceedings of the 18th World Conference on Nondestructive Testing, Durban, South Africa, 16–20 April 2012; pp. 16–20. [Google Scholar]
- Li, Y.; Cai, R.; Yan, B.; Zainal Abidin, I.M.; Jing, H.; Wang, Y. A Capsule-Type Electromagnetic Acoustic Transducer for Fast Screening of External Corrosion in Nonmagnetic Pipes. Sensors 2018, 18, 1733. [Google Scholar] [CrossRef]
- Klann, M.; Beuker, T. Pipeline inspection with the high resolution EMAT ILI-tool: Report on field experience. In Proceedings of the IPC 2006 6th International Pipeline Conference, Alberta, Canada, 25–29 September 2006. [Google Scholar]
- Varela, F.; Yongjun Tan, M.; Forsyth, M. An overview of major methods for inspecting and monitoring external corrosion of on-shore transportation pipelines. Corros. Eng. Sci. Technol. 2015, 50, 226–235. [Google Scholar] [CrossRef]
- Ulapane, N.; Alempijevic, A.; Vidal Calleja, T.; Valls Miro, J. Pulsed eddy current sensing for critical pipe condition assessment. Sensors 2017, 17, 2208. [Google Scholar] [CrossRef]
- Duran, O.; Althoefer, K.; Seneviratne, L.D. State of the art in sensor technologies for sewer inspection. IEEE Sens. J. 2002, 2, 73–81. [Google Scholar] [CrossRef]
- Li, X.; Zhang, S.; Liu, S.; Jiao, Q.; Dai, L. An experimental evaluation of the probe dynamics as a probe pig inspects internal convex defects in oil and gas pipelines. Measurement 2015, 63, 49–60. [Google Scholar] [CrossRef]
- Duran, O.; Althoefer, K.; Seneviratne, L.D. A sensor for pipe inspection: Model, analysis and image extraction. In Proceedings of the 2003 International Conference on Image Processing, Barcelona, Spain, 14–17 September 2003; pp. 3–597. [Google Scholar]
- Beckmann, P.; Spizzichino, A. The Scattering of Electromagnetic Waves from Rough Surfaces; Artech House, Inc.: Norwood, MA, USA, 1987; Volume 511, p. 1987. [Google Scholar]
- Toloei, A.; Stoilov, V.; Northwood, D. Simultaneous effect of surface roughness and passivity on corrosion resistance of metals. WIT Trans. Eng. Sci. 2015, 90, 355–367. [Google Scholar] [Green Version]
- Forrest, S. The sensitivity of photoconductor receivers for long-wavelength optical communications. J. Lightwave Technol. 1985, 3, 347–360. [Google Scholar] [CrossRef]
- Matias, F.A.; Vila, M.M.; Tubino, M. A simple device for quantitative colorimetric diffuse reflectance measurements. Sens. Actuators B Chem. 2003, 88, 60–66. [Google Scholar] [CrossRef]
- Held, G. Introduction to Light Emitting Diode Technology and Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Zhao, W.; Zhang, T.; Wang, Y.; Qiao, J.; Wang, Z. Corrosion failure mechanism of associated gas transmission pipeline. Materials 2018, 11, 1935. [Google Scholar] [CrossRef]
- Ginzel, R.; Kanters, W. Pipeline corrosion and cracking and the associated calibration considerations for same side sizing applications. NDT. Net 2002, 7, 1435–4934. [Google Scholar]
- Makarova, M. Design of experimental loop to demonstrate pigging activity. Master’s Thesis, UiT Norges arktiske universitet, Tromsø, Norway, 2017. [Google Scholar]
- Chen, Y.; Ma, H. Signal de-noising in ultrasonic testing based on stationary wavelet transform. In Proceedings of the WRI Global Congress on Intelligent Systems, Xiamen, China, 19 May 2009; pp. 474–478. [Google Scholar]
- Kim, J.; Udpa, L.; Udpa, S. Multi-stage adaptive noise cancellation for ultrasonic NDE. NDT E Int. 2001, 34, 319–328. [Google Scholar] [CrossRef]
- Praveen, A.; Vijayarekha, K.; Manjula, K.; Venkatraman, B. Wavelet Analysis and De-noising of Signal. Res. J. Appl. Sci. Eng. Technol. 2012, 4, 5534–5538. [Google Scholar]
- Lin, C.-C.; Liu, P.-L.; Yeh, P.-L. Application of empirical mode decomposition in the impact-echo test. NDT E Int. 2009, 42, 589–598. [Google Scholar] [CrossRef]
- Azami, H.; Mohammadi, K.; Bozorgtabar, B. An improved signal segmentation using moving average and Savitzky-Golay filter. J. Signal Inf. Process. 2012, 3, 39–44. [Google Scholar] [CrossRef]
- Bettayeb, F.; Haciane, S.; Aoudia, S. Improving the time resolution and signal noise ratio of ultrasonic testing of welds by the wavelet packet. NDT E Int. 2005, 38, 478–484. [Google Scholar] [CrossRef]
- Purushotham, V.; Narayanan, S.; Prasad, S.A. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition. NDT E Int. 2005, 38, 654–664. [Google Scholar] [CrossRef]
- Mallat, S. A Wavelet Tour of Signal Processing; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Blu, T. A new design algorithm for two-band orthonormal rational filter banks and orthonormal rational wavelets. IEEE Trans. Signal Proc. 1998, 46, 1494–1504. [Google Scholar] [CrossRef] [Green Version]
- Soman, K. Insight into Wavelets: From Theory to Practice; PHI Learning Pvt. Ltd.: New Delhi, India, 2010. [Google Scholar]
- Donoho, D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef]
- Donoho, D.L.; Johnstone, I.M. Minimax estimation via wavelet shrinkage. Annals Stat. 1998, 26, 879–921. [Google Scholar] [CrossRef]
- Florman, E.; Tary, J. Required Signal-to-Noise Ratios, RF Signal Power, and Bandwidth for Multichannel Radio Communications Systems. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote100.pdf (accessed on 19 August 2019).
- Liu, C.; Li, Y.; Fang, L.; Xu, M. Experimental study on a de-noising system for gas and oil pipelines based on an acoustic leak detection and location method. Int. J. Press. Vessels Pip. 2017, 151, 20–34. [Google Scholar] [CrossRef]
- Baili, J.; Lahouar, S.; Hergli, M.; Al-Qadi, I.L.; Besbes, K. GPR signal de-noising by discrete wavelet transform. NDT E Int. 2009, 42, 696–703. [Google Scholar] [CrossRef]
Parameters | Light Emitting Diode (LED) Emitter | Light Dependent Resistor (LDR) Sensor |
---|---|---|
Dimension | 4 × 8 × 2.4 mm | 6.5 × 5.5 × 4 mm |
Voltage (V) | 12 V | 5 V |
Power Consumption | 24 mW | - |
Dark Resistance | - | 1 MΩ |
Power Dissipation | - | 100 mW |
Operating Temperature | −30 °C~85 °C | −30 °C~70 °C |
Response Time | - | Rise time 20 ms, Decay time 30 ms |
Relative Sensitivity of CdS for the Green LED | - | 100% |
Chemical Content in Steel Pipe | P | Fe | Pb | C | Si | Ti | Cr | Mn | Co | Ni |
---|---|---|---|---|---|---|---|---|---|---|
mass% | 0.03 | 92.26 | 0.128 | 6.088 | 0.18 | 0.032 | 0.066 | 0.974 | 0.152 | 0.086 |
Level of Decompositions | Method of De-Noising | Thresholding Rule | |||||
---|---|---|---|---|---|---|---|
Hybrid | Universal | Minimax | |||||
SNR (dB) | RMSE | SNR (dB) | RMSE | SNR (dB) | RMSE | ||
1 | Soft | 5.77094 | 0.197 | 5.77094 | 0.192 | 5.77092 | 0.191 |
Hard | 5.77087 | 0.192 | 5.77088 | 0.193 | 5.77084 | 0.192 | |
2 | Soft | 5.77147 | 0.158 | 5.772 | 0.154 | 5.77175 | 0.153 |
Hard | 5.77093 | 0.154 | 5.77125 | 0.158 | 5.77102 | 0.152 | |
3 | Soft | 5.81179 | 0.081 | 5.82144 | 0.08 | 5.80638 | 0.087 |
Hard | 5.80036 | 0.094 | 5.80471 | 0.091 | 5.77124 | 0.099 | |
4 | Soft | 5.77375 | 0.135 | 5.77838 | 0.134 | 5.77667 | 0.135 |
Hard | 5.77101 | 0.140 | 5.77276 | 0.14 | 5.77204 | 0.146 | |
5 | Soft | 5.30031 | 0.167 | 4.48544 | 0.161 | 4.69869 | 0.162 |
Hard | 5.29639 | 0.169 | 4.60401 | 0.165 | 4.65698 | 0.164 | |
6 | Soft | 4.56004 | 0.204 | 2.67128 | 0.205 | 3.23969 | 0.205 |
Hard | 4.42163 | 0.212 | 2.2419 | 0.211 | 3.16649 | 0.216 | |
7 | Soft | 2.35312 | 0.253 | 2.35758 | 0.25 | 3.23001 | 0.253 |
Hard | 2.35003 | 0.296 | 2.13721 | 0.297 | 3.14142 | 0.297 |
Wavelets | SNR | RMSE | Wavelets | SNR | RMSE | Wavelets | SNR | RMSE |
---|---|---|---|---|---|---|---|---|
db2 | 5.44103 | 0.084 | Haar | 4.85419 | 0.083 | bior5_5 | 5.74352 | 0.120 |
dp3 | 5.37424 | 0.092 | bior1_3 | 5.38377 | 0.087 | bior6_8 | 5.76728 | 0.110 |
db4 | 5.47267 | 0.085 | bior1_5 | 5.44913 | 0.088 | Coif 1 | 5.26203 | 0.190 |
dp5 | 5.65446 | 0.098 | bior2_2 | 5.20401 | 0.081 | Coif 2 | 5.62977 | 0.180 |
db6 | 5.81814 | 0.170 | bior2_4 | 5.52928 | 0.094 | Coif 3 | 5.80545 | 0.099 |
dp7 | 5.59607 | 0.099 | bior2_6 | 5.73171 | 0.096 | Coif 4 | 5.81171 | 0.140 |
dp8 | 5.55018 | 0.092 | bior2_8 | 5.74572 | 0.093 | Coif 5 | 5.7087 | 0.110 |
db9 | 5.62716 | 0.081 | bior3_1 | 4.04884 | 0.180 | Sym 3 | 5.44103 | 0.094 |
db10 | 5.82144 | 0.080 | bior3_3 | 4.04884 | 0.170 | Sym 3 | 5.37424 | 0.096 |
dp11 | 5.71459 | 0.098 | bior3_5 | 5.45456 | 0.090 | Sym 4 | 5.45931 | 0.097 |
db12 | 5.53923 | 0.190 | bior3_7 | 5.4685 | 0.098 | Sym 5 | 5.67945 | 0.093 |
dp13 | 5.60735 | 0.130 | bior3_9 | 5.5201 | 0.120 | Sym 6 | 5.74788 | 0.094 |
db14 | 5.74366 | 0.092 | bior4_4 | 5.60627 | 0.098 | Sym 7 | 5.53356 | 0.092 |
Inspection Speed in mm/s | 20-mm Lift-off | 30-mm Lift-off | ||
---|---|---|---|---|
Experimentally Measured Length in mm | % Error for Length | Experimentally Measured Length in mm | % Error for Length | |
2.9 | 31.90 | 00.55 | 33.35 | 3.25 |
43.50 | 06.82 | 43.50 | 6.09 | |
52.20 | 05.12 | 52.20 | 4.40 | |
7.3 | 33.10 | 02.47 | 36.65 | 13.46 |
45.99 | 12.17 | 43.80 | 6.82 | |
54.97 | 09.94 | 54.75 | 9.50 | |
11 | 34.10 | 05.57 | 38.50 | 19.19 |
46.20 | 12.68 | 49.50 | 20.73 | |
55.00 | 10.00 | 55.00 | 10.00 | |
13 | 39.00 | 20.74 | 39.00 | 20.74 |
52.00 | 26.82 | 53.30 | 30.00 | |
58.50 | 17.00 | 61.10 | 22.22 |
Actual | Experimental | % Error of Length | Actual Depth (mm) | Peak Voltage (V) |
---|---|---|---|---|
40 | 41.24 | 3.02 | 1 | 2.054 |
40 | 40.43 | 1.07 | 0.75 | 1.999 |
40 | 41.10 | 2.75 | 0.5 | 1.941 |
Actual | Experimental | % Error for Length | Actual Depth (mm) | Peak Voltage (V) |
---|---|---|---|---|
20 | 20.417 | 2.08 | 2 | 2.294 |
20 | 20.754 | 3.77 | 2 | 2.294 |
25 | 24.884 | 0.4 | 2 | 2.294 |
15 | 13.790 | 8.06 | 2 | 2.294 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampath, S.; Bhattacharya, B.; Aryan, P.; Sohn, H. A Real-Time, Non-Contact Method for In-Line Inspection of Oil and Gas Pipelines Using Optical Sensor Array. Sensors 2019, 19, 3615. https://doi.org/10.3390/s19163615
Sampath S, Bhattacharya B, Aryan P, Sohn H. A Real-Time, Non-Contact Method for In-Line Inspection of Oil and Gas Pipelines Using Optical Sensor Array. Sensors. 2019; 19(16):3615. https://doi.org/10.3390/s19163615
Chicago/Turabian StyleSampath, Santhakumar, Bishakh Bhattacharya, Pouria Aryan, and Hoon Sohn. 2019. "A Real-Time, Non-Contact Method for In-Line Inspection of Oil and Gas Pipelines Using Optical Sensor Array" Sensors 19, no. 16: 3615. https://doi.org/10.3390/s19163615
APA StyleSampath, S., Bhattacharya, B., Aryan, P., & Sohn, H. (2019). A Real-Time, Non-Contact Method for In-Line Inspection of Oil and Gas Pipelines Using Optical Sensor Array. Sensors, 19(16), 3615. https://doi.org/10.3390/s19163615