Assessment of Fringe Pattern Decomposition with a Cross-Correlation Index for Phase Retrieval in Fringe Projection 3D Measurements
<p>Simulated projection fringe patterns of sphere shape. (<b>a</b>) Fringe pattern with frequency 1/8 without noise added; (<b>b</b>) Fringe pattern with frequency 1/16 without noise added; (<b>c</b>) Fringe pattern with frequency 1/8 with Gaussian noise added; (<b>d</b>) Fringe pattern with frequency 1/16 with Gaussian noise added; (<b>e-1</b>) The ground truth background part of <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a,c; (<b>e-2</b>) The ground truth fringe part of <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a,c; (<b>f-1</b>) The ground truth background part of <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b,d; (<b>f-2</b>) The ground truth fringe part of <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b,d; (<b>g</b>) The ground truth phase.</p> "> Figure 2
<p>Simulated projection fringe patterns of peaks shape. (<b>a</b>) Fringe pattern with frequency 1/8 without noise added; (<b>b</b>) Fringe pattern with frequency 1/16 without noise added; (<b>c</b>) Fringe pattern with frequency 1/8 with Gaussian noise added; (<b>d</b>) Fringe pattern with frequency 1/16 with Gaussian noise added; (<b>e-1</b>) The ground truth background part of <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>a,c; (<b>e-2</b>) The ground truth fringe part of <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>a,c; (<b>f-1</b>) The ground truth background part of <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>b,d; (<b>f-2</b>) The ground truth fringe part of <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>b,d; (<b>g</b>) The ground truth phase.</p> "> Figure 2 Cont.
<p>Simulated projection fringe patterns of peaks shape. (<b>a</b>) Fringe pattern with frequency 1/8 without noise added; (<b>b</b>) Fringe pattern with frequency 1/16 without noise added; (<b>c</b>) Fringe pattern with frequency 1/8 with Gaussian noise added; (<b>d</b>) Fringe pattern with frequency 1/16 with Gaussian noise added; (<b>e-1</b>) The ground truth background part of <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>a,c; (<b>e-2</b>) The ground truth fringe part of <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>a,c; (<b>f-1</b>) The ground truth background part of <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>b,d; (<b>f-2</b>) The ground truth fringe part of <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>b,d; (<b>g</b>) The ground truth phase.</p> "> Figure 3
<p>Experimental projection fringe patterns. (<b>a</b>) Fringe pattern with larger frequency; (<b>b</b>) Fringe pattern with small frequency. (<b>c-1</b>) The ground truth background part of <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a; (<b>c-2</b>) The ground truth fringe part of <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a; (<b>d-1</b>) The ground truth background part of <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>d-2</b>) The ground truth fringe part of <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>e-1</b>) The ground truth phase for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a; (<b>e-2</b>) The ground truth phase for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b.</p> "> Figure 4
<p>The diagram of phase retrieval by Fourier transform and Shearlet transform.</p> "> Figure 5
<p>CrossUV, SE and SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a> by Fourier transform method with different parameter values. (<b>a-1</b>) CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>a-2</b>) SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>a-3</b>) SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>b-1</b>) CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>b-2</b>) SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>b-3</b>) SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b. (<b>c-1</b>) CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>c-2</b>) SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>c-3</b>) SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>d-1</b>) CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>d-2</b>) SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>d-3</b>) SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d.</p> "> Figure 5 Cont.
<p>CrossUV, SE and SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a> by Fourier transform method with different parameter values. (<b>a-1</b>) CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>a-2</b>) SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>a-3</b>) SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>b-1</b>) CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>b-2</b>) SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>b-3</b>) SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b. (<b>c-1</b>) CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>c-2</b>) SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>c-3</b>) SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>d-1</b>) CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>d-2</b>) SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>d-3</b>) SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d.</p> "> Figure 6
<p>The retrieved phase and phase error for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a> by Fourier transform method under optimal CrossUV, SE and SSIMV. (<b>a-1</b>) Phase under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>a-2</b>) Phase under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>a-3</b>) Phase under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>b-1</b>) Phase error under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>b-2</b>) Phase error under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>b-3</b>) Phase error under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>c-1</b>) Phase under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>c-2</b>) Phase under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>c-3</b>) Phase under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>d-1</b>) Phase error under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>d-2</b>) Phase error under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>d-3</b>) Phase error under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>e-1</b>) Phase under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>e-2</b>) Phase under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>e-3</b>) Phase under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>f-1</b>) Phase error under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>f-2</b>) Phase error under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>f-3</b>) Phase error under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>g-1</b>) Phase under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>g-2</b>) Phase under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>g-3</b>) Phase under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>h-1</b>) Phase error under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>h-2</b>) Phase error under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>h-3</b>) Phase error under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d.</p> "> Figure 6 Cont.
<p>The retrieved phase and phase error for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a> by Fourier transform method under optimal CrossUV, SE and SSIMV. (<b>a-1</b>) Phase under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>a-2</b>) Phase under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>a-3</b>) Phase under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>b-1</b>) Phase error under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>b-2</b>) Phase error under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>b-3</b>) Phase error under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a; (<b>c-1</b>) Phase under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>c-2</b>) Phase under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>c-3</b>) Phase under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>d-1</b>) Phase error under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>d-2</b>) Phase error under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>d-3</b>) Phase error under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b; (<b>e-1</b>) Phase under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>e-2</b>) Phase under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>e-3</b>) Phase under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>f-1</b>) Phase error under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>f-2</b>) Phase error under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>f-3</b>) Phase error under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c; (<b>g-1</b>) Phase under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>g-2</b>) Phase under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>g-3</b>) Phase under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>h-1</b>) Phase error under optimal CrossUV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>h-2</b>) Phase error under optimal SE for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d; (<b>h-3</b>) Phase error under optimal SSIMV for <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d.</p> "> Figure 7
<p>CrossUV, SE and SSIMV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a> by Fourier transform method with different parameter values. (<b>a-1</b>) CrossUV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>a; (<b>a-2</b>) SE for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>a; (<b>a-3</b>) SSIMV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>a; (<b>b-1</b>) CrossUV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>b; (<b>b-2</b>) SE for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>b; (<b>b-3</b>) SSIMV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>b. (<b>c-1</b>) CrossUV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>c; (<b>c-2</b>) SE for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>c; (<b>c-3</b>) SSIMV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>c; (<b>d-1</b>) CrossUV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>d; (<b>d-2</b>) SE for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>d; (<b>d-3</b>) SSIMV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>d.</p> "> Figure 7 Cont.
<p>CrossUV, SE and SSIMV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a> by Fourier transform method with different parameter values. (<b>a-1</b>) CrossUV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>a; (<b>a-2</b>) SE for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>a; (<b>a-3</b>) SSIMV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>a; (<b>b-1</b>) CrossUV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>b; (<b>b-2</b>) SE for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>b; (<b>b-3</b>) SSIMV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>b. (<b>c-1</b>) CrossUV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>c; (<b>c-2</b>) SE for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>c; (<b>c-3</b>) SSIMV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>c; (<b>d-1</b>) CrossUV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>d; (<b>d-2</b>) SE for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>d; (<b>d-3</b>) SSIMV for <a href="#sensors-18-03578-f002" class="html-fig">Figure 2</a>d.</p> "> Figure 8
<p>The decomposed background and fringe of <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a> by Shearlet transform method with different parameter values. (<b>a-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a with decomposition layer 3; (<b>b-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a with decomposition layer 4; (<b>c-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b with decomposition layer 3; (<b>d-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b with decomposition layer 4; (<b>e-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c with decomposition layer 3; (<b>f-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c with decomposition layer 4; (<b>g-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d with decomposition layer 3; (<b>h-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d with decomposition layer 4; (<b>a-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a with decomposition layer 3; (<b>b-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a with decomposition layer 4; (<b>c-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b with decomposition layer 3; (<b>d-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b with decomposition layer 4; (<b>e-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c with decomposition layer 3; (<b>f-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c with decomposition layer 4; (<b>g-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d with decomposition layer 3; (<b>h-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d with decomposition layer 4.</p> "> Figure 8 Cont.
<p>The decomposed background and fringe of <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a> by Shearlet transform method with different parameter values. (<b>a-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a with decomposition layer 3; (<b>b-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a with decomposition layer 4; (<b>c-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b with decomposition layer 3; (<b>d-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b with decomposition layer 4; (<b>e-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c with decomposition layer 3; (<b>f-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c with decomposition layer 4; (<b>g-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d with decomposition layer 3; (<b>h-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d with decomposition layer 4; (<b>a-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a with decomposition layer 3; (<b>b-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a with decomposition layer 4; (<b>c-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b with decomposition layer 3; (<b>d-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b with decomposition layer 4; (<b>e-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c with decomposition layer 3; (<b>f-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c with decomposition layer 4; (<b>g-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d with decomposition layer 3; (<b>h-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d with decomposition layer 4.</p> "> Figure 8 Cont.
<p>The decomposed background and fringe of <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a> by Shearlet transform method with different parameter values. (<b>a-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a with decomposition layer 3; (<b>b-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a with decomposition layer 4; (<b>c-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b with decomposition layer 3; (<b>d-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b with decomposition layer 4; (<b>e-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c with decomposition layer 3; (<b>f-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c with decomposition layer 4; (<b>g-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d with decomposition layer 3; (<b>h-1</b>) decomposed background from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d with decomposition layer 4; (<b>a-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a with decomposition layer 3; (<b>b-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a with decomposition layer 4; (<b>c-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b with decomposition layer 3; (<b>d-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b with decomposition layer 4; (<b>e-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c with decomposition layer 3; (<b>f-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>c with decomposition layer 4; (<b>g-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d with decomposition layer 3; (<b>h-2</b>) decomposed fringe from <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>d with decomposition layer 4.</p> "> Figure 9
<p>CrossUV, SE and SSIMV for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a> by Fourier transform method with different parameter values. (<b>a-1</b>) CrossUV for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a; (<b>a-2</b>) SE for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a; (<b>a-3</b>) SSIMV for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a; (<b>b-1</b>) CrossUV for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>b-2</b>) SE for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>b-3</b>) SSIMV for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b.</p> "> Figure 10
<p>The decomposed background and fringe of <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a> by Shearlet transform method with decomposition layer 3 and 4. (<b>a-1</b>) decomposed background from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a with decomposition layer 3; (<b>b-1</b>) decomposed background from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a with decomposition layer 4; (<b>c-1</b>) decomposed background from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b with decomposition layer 3; (<b>d-1</b>) decomposed background from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b with decomposition layer 4; (<b>a-2</b>) decomposed fringe from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a with decomposition layer 3; (<b>b-2</b>) decomposed fringe from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a with decomposition layer 4; (<b>c-2</b>) decomposed fringe from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b with decomposition layer 3; (<b>d-2</b>) decomposed fringe from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b with decomposition layer 4.</p> "> Figure 10 Cont.
<p>The decomposed background and fringe of <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a> by Shearlet transform method with decomposition layer 3 and 4. (<b>a-1</b>) decomposed background from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a with decomposition layer 3; (<b>b-1</b>) decomposed background from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a with decomposition layer 4; (<b>c-1</b>) decomposed background from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b with decomposition layer 3; (<b>d-1</b>) decomposed background from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b with decomposition layer 4; (<b>a-2</b>) decomposed fringe from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a with decomposition layer 3; (<b>b-2</b>) decomposed fringe from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a with decomposition layer 4; (<b>c-2</b>) decomposed fringe from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b with decomposition layer 3; (<b>d-2</b>) decomposed fringe from <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b with decomposition layer 4.</p> "> Figure 11
<p>The retrieved phase and phase error for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b by Fourier transform under optimal CrossUV, SE and SSIMV and Shearlet transform method under different decomposition scales. (<b>a-1</b>) Phase under optimal CrossUV for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>a-2</b>) Phase under optimal SE for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>a-3</b>) Phase under optimal SSIMV for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>b-1</b>) Phase error under optimal CrossUV for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>b-2</b>) Phase error under optimal SE for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>b-3</b>) Phase error under optimal SSIMV for <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>c-1</b>) Phase under decomposition layer of 3 by Shearlet transform by <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>c-2</b>) Phase under decomposition layer of 4 by Shearlet transform by <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>d-1</b>) Phase error under decomposition layer of 3 by Shearlet transform by <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b; (<b>d-2</b>) Phase error under decomposition layer of 4 by Shearlet transform by <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b.</p> "> Figure A1
<p>The decomposed background of <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a by Fourier transform method with different parameter values. (<b>a</b>–<b>s</b>) are the decomposed background by Fourier transform method with 1th to 19th of filtering window sizes of [2:1:20], respectively.</p> "> Figure A1 Cont.
<p>The decomposed background of <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>a by Fourier transform method with different parameter values. (<b>a</b>–<b>s</b>) are the decomposed background by Fourier transform method with 1th to 19th of filtering window sizes of [2:1:20], respectively.</p> "> Figure A2
<p>The decomposed background of <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b by Fourier transform method with different parameter values. (<b>a</b>–<b>n</b>) are the decomposed background by Fourier transform method with 1th to 14th of filtering window sizes of [4:2:30], respectively.</p> "> Figure A2 Cont.
<p>The decomposed background of <a href="#sensors-18-03578-f001" class="html-fig">Figure 1</a>b by Fourier transform method with different parameter values. (<b>a</b>–<b>n</b>) are the decomposed background by Fourier transform method with 1th to 14th of filtering window sizes of [4:2:30], respectively.</p> "> Figure A3
<p>The decomposed background of <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>a by Fourier transform method with different parameter values. (<b>a</b>–<b>q</b>) are the decomposed background by Fourier transform method with 1th to 17th of filtering window sizes of [4:1:20], respectively.</p> "> Figure A4
<p>The decomposed background of <a href="#sensors-18-03578-f003" class="html-fig">Figure 3</a>b by Fourier transform method with different parameter values. (<b>a</b>–<b>r</b>) are the decomposed background by Fourier transform method with 1th to 18th of filtering window sizes of [6:2:40], respectively.</p> ">
Abstract
:1. Introduction
2. Cross-Correlation of Background Part and Fringe Part for Fourier Transform and Shearlet Transform Methods
2.1. Fourier Transform and Shearlet Transform Methods Based Fringe Pattern Decomposition
2.1.1. Fourier Transform Method for Fringe Projection
2.1.2. Shearlet Transform Method for Fringe Projection
2.2. The Proposed Cross-Correlation Index for Decomposition Assessment
3. Experimental Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Gorthi, S.; Rastogi, P. Fringe Projection Techniques: Whither We Are? Opt. Lasers Eng. 2010, 48, 133–140. [Google Scholar] [CrossRef]
- Song, L.; Li, X.; Yang, Y.; Zhu, X.; Guo, Q.; Liu, H. Structured-Light Based 3D Reconstruction System for Cultural Relic Packaging. Sensors 2018, 18, 2981. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; An, Y.; Cappelleri, D.; Xu, J.; Zhang, S. High-accuracy, High-speed 3D Structured Light Imaging Techniques and Potential Applications to Intelligent Robotics. Int. J. Intell. Robot. Appl. 2017, 1, 86–103. [Google Scholar] [CrossRef]
- You, Y.; Shen, Y.; Zhang, G.; Xing, X. Real-Time and High-Resolution 3D Face Measurement via a Smart Active Optical Sensor. Sensors 2017, 17, 734. [Google Scholar] [CrossRef] [PubMed]
- Liberadzki, P.; Adamczyk, M.; Witkowski, M.; Sitnik, R. Structured-Light-Based System for Shape Measurement of the Human Body in Motion. Sensors 2018, 18, 2827. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. Absolute Phase Retrieval Methods for Digital Fringe Projection Profilometry: A Review. Opt. Lasers Eng. 2018, 107, 28–37. [Google Scholar] [CrossRef]
- Zuo, C.; Feng, S.; Huang, L.; Tao, T.; Yin, W.; Chen, Q. Phase Shifting Algorithms for Fringe Projection Profilometry: A Review. Opt. Lasers Eng. 2018, 109, 23–59. [Google Scholar] [CrossRef]
- Takeda, M.; Mutoh, K. Fourier Transform Profilometry for the Automatic Measurement of 3-D Object Shapes. Appl. Opt. 1983, 22, 3977–3982. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Qian, K.; Bing, P.; Anand, K. Comparison of Fourier Transform, Windowed Fourier Transform, and Wavelet Transform Methods for Phase Extraction from a Single Fringe Pattern in Fringe Projection Profilometry. Opt. Lasers Eng. 2010, 48, 141–148. [Google Scholar]
- Abid, A.; Gdeisat, M.; Burton, D.; Lalor, M.; Lilley, F. Spatial Fringe Pattern Analysis Using the Two-dimensional Continuous Wavelet Transform Employing a Cost Function. Appl. Opt. 2007, 46, 6120–6126. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Podoleanu, A.; Yang, Z.; Yang, T.; Zhao, H. Morphological Operation-based Bi-dimensional Empirical Mode Decomposition for Automatic Background Removal of Fringe Patterns. Opt. Express 2012, 20, 24247–24262. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Tang, C.; Li, B.; Sun, C.; Wang, L. Phase Retrieval from Single Frame Projection Fringe Pattern with Variational Image Decomposition. Opt. Lasers Eng. 2014, 59, 25–33. [Google Scholar] [CrossRef]
- Li, B.; Tang, C.; Zhu, X.; Su, Y.; Xu, W. Shearlet Transform for Phase Extraction in Fringe Projection Profilometry with Edges Discontinuity. Opt. Lasers Eng. 2016, 78, 91–98. [Google Scholar] [CrossRef]
- Zhou, W.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [Green Version]
- Ghiglia, D.; Pritt, M. Path-Following Methods. In Two-Dimensional Phase Unwrapping: Theory, Algorithm, and Software, 1st ed.; Wiley: New York, NY, USA, 1998; pp. 122–135. ISBN 978-0471249351. [Google Scholar]
- Zhang, Q.; Wu, Z. A Carrier Removal Method in Fourier Transform Profilometry with Zernike Polynomials. Opt. Lasers Eng. 2013, 51, 253–260. [Google Scholar] [CrossRef]
Figures | CrossUV | SE | SSIMV |
---|---|---|---|
Figure 1a | 6.70 × 10−3 (10th) | 6.72 × 10−3 (5th) | 9.68 × 10−1 (8th) |
Figure 1b | 1.99 × 10−2 (8th) | 2.09 × 10−2 (8th) | 9.07 × 10−1 (8th) |
Figure 1c | 6.93 × 10−3 (10th) | 1.55 × 10−2 (7th) | 8.56 × 10−1 (8th) |
Figure 1d | 1.92 × 10−2 (9th) | 2.23 × 10−2 (9th) | 7.35 × 10−1 (8th) |
Figure 2a | 7.96 × 10−3 (14th) | 2.58 × 10−2 (13th) | 9.99 × 10−1 (12th) |
Figure 2b | 3.06 × 10−2 (10th) | 2.75 × 10−2 (8th) | 9.95 × 10−1 (8th) |
Figure 2c | 1.03 × 10−2 (15th) | 3.63 × 10−2 (10th) | 7.97 × 10−1 (11th) |
Figure 2d | 3.19 × 10−2 (10th) | 3.27 × 10−2 (8th) | 7.82 × 10−1 (11th) |
Figure 3a | 1.62 × 10−2 (13th) | 2.02 × 10−1 (11th) | 9.33 × 10−1 (7th) |
Figure 3b | 2.17 × 10−2 (14th) | 9.18 × 10−2 (8th) | 8.59 × 10−1 (6th) |
Figures | Shearlet (3 Scales) | Shearlet (4 Scales) | ||||
---|---|---|---|---|---|---|
CrossUV | SE | SSIMV | CrossUV | SE | SSIMV | |
Figure 1a | 2.62 × 10−4 | 6.51 × 10−3 | 9.73 × 10−1 | 1.04 × 10−3 | 9.19 × 10−3 | 9.53 × 10−1 |
Figure 1b | 5.30 × 10−2 | 5.38 × 10−2 | 8.26 × 10−1 | 1.01 × 10−3 | 1.86 × 10−2 | 9.19 × 10−1 |
Figure 1c | 3.01 × 10−4 | 1.48 × 10−2 | 8.16 × 10−1 | 9.18 × 10−4 | 1.63 × 10−2 | 7.96 × 10−1 |
Figure 1d | 5.07 × 10−2 | 5.31 × 10−2 | 7.01 × 10−1 | 1.08 × 10−3 | 1.98 × 10−2 | 7.41 × 10−1 |
Figure 3a | 2.76 × 10−3 | 1.78 × 10−1 | 9.29 × 10−1 | 4.68 × 10−3 | 8.17 × 10−1 | 9.15 × 10−1 |
Figure 3b | 7.16 × 10−1 | 5.64 × 10−1 | 7.01 × 10−1 | 4.10 × 10−3 | 9.18 × 10−2 | 8.66 × 10−1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Song, L.; Wang, H.; Guo, Q. Assessment of Fringe Pattern Decomposition with a Cross-Correlation Index for Phase Retrieval in Fringe Projection 3D Measurements. Sensors 2018, 18, 3578. https://doi.org/10.3390/s18103578
Zhu X, Song L, Wang H, Guo Q. Assessment of Fringe Pattern Decomposition with a Cross-Correlation Index for Phase Retrieval in Fringe Projection 3D Measurements. Sensors. 2018; 18(10):3578. https://doi.org/10.3390/s18103578
Chicago/Turabian StyleZhu, Xinjun, Limei Song, Hongyi Wang, and Qinghua Guo. 2018. "Assessment of Fringe Pattern Decomposition with a Cross-Correlation Index for Phase Retrieval in Fringe Projection 3D Measurements" Sensors 18, no. 10: 3578. https://doi.org/10.3390/s18103578
APA StyleZhu, X., Song, L., Wang, H., & Guo, Q. (2018). Assessment of Fringe Pattern Decomposition with a Cross-Correlation Index for Phase Retrieval in Fringe Projection 3D Measurements. Sensors, 18(10), 3578. https://doi.org/10.3390/s18103578