Enhanced Hydrogen Detection Based on Mg-Doped InN Epilayer
<p>Schematic diagrams of conduction mechanism for n-type (<b>a</b>) and p-type (<b>b</b>) InN sensors.</p> "> Figure 2
<p>The XRD rocking curves of the two samples measured across (002) plane.</p> "> Figure 3
<p>Schematic structure of the hydrogen sensor based on Mg-doped InN.</p> "> Figure 4
<p>A schematic diagram of hydrogen adsorption process. (<b>a</b>) Formation of a dipole layer, formed by hydrogen atoms trapped at the interface of catalytic metal and semiconductor, causing a voltage shift. (<b>b</b>) The corresponding schematic energy band diagram of the studied device (<b>b</b>) at air and (<b>c</b>) under the introduction of hydrogen gas.</p> "> Figure 5
<p>Response as a function of exposure time for sample A under the exposure to 2000 ppm H<sub>2</sub>/air and then recovery in the air at different temperatures from 25 °C to 125 °C.</p> "> Figure 6
<p>Resistance variation as a function of hydrogen concentrations for Mg-doped InN sensors at 125 °C at different Mg cell temperatures. (<b>a</b>) The response of all samples as a function of gas atmosphere. (<b>b</b>) The response curve of sample B and C. The inset shows their transient response in first 30 s upon exposure to 2000 ppm H<sub>2</sub>/air, almost linear with respect to time.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Crabtree, G.W.; Dresselhaus, M.S. The Hydrogen Fuel Alternative. MRS Bull. 2008, 33, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Lu, G.; Miura, N.; Yamazoe, N. High-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode. Sens. Actuators B Chem. 1996, 35–36, 130–135. [Google Scholar] [CrossRef]
- Sekimoto, S.; Nakagawa, H.; Okazaki, S.; Fukuda, K.; Asakura, S.; Shigemori, T.; Takahashi, S. A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide. Sens. Actuators B Chem. 2000, 66, 142–145. [Google Scholar] [CrossRef]
- Baselt, D.R.; Fruhberger, B.; Klaassen, E.; Cemalovic, S.; Britton, C.L.; Patel, S.V.; Mlsna, T.E.; McCorkle, D.; Warmack, B. Design and performance of a microcantilever-based hydrogen sensor. Sens. Actuators B Chem. 2003, 88, 120–131. [Google Scholar] [CrossRef]
- Lange, U.; Hirsch, T.; Mirsky, V.M.; Wolfbeis, O.S. Hydrogen sensor based on a graphene-palladium nanocomposite. Electrochim. Acta 2011, 56, 3707–3712. [Google Scholar] [CrossRef]
- Anand, K.; Singh, O.; Singh, M.P.; Kaur, J.; Singh, R.C. Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators B Chem. 2014, 195, 409–415. [Google Scholar] [CrossRef]
- Baik, K.H.; Kim, J.; Jang, S. Highly sensitive nonpolar a-plane GaN based hydrogen diode sensor with textured active area using photo-chemical etching. Sens. Actuators B Chem. 2017, 238, 462–467. [Google Scholar] [CrossRef]
- Schalwig, J.; Eickhoff, M.; Ambacher, O.; Stutzmann, M. Gas sensitive GaN/AlGaN-heterostructures. Sens. Actuators B Chem. 2002, 87, 425–430. [Google Scholar] [CrossRef]
- Wang, H.T.; Kang, B.S.; Ren, F.; Fitch, R.C.; Gillespie, J.K.; Moser, N.; Jessen, G.; Jenkins, T.; Dettmer, R.; Via, D.; et al. Comparison of gate and drain current detection of hydrogen at room temperature with AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 2005, 87, 172105. [Google Scholar] [CrossRef]
- Irokawa, Y.; Sakuma, Y.; Sekiguchi, T. Effect of Dielectrics on Hydrogen Detection Sensitivity of Metal–Insulator–Semiconductor Pt–GaN Diodes. J. Appl. Phys. 2007, 46, 7714–7716. [Google Scholar] [CrossRef]
- Tsai, T.H.; Chen, H.I.; Lin, K.W.; Hung, C.W.; Hsu, C.H.; Chen, T.P.; Chen, L.Y.; Chu, K.Y.; Chang, C.F.; Liu, W.C. Hydrogen Sensing Characteristics of a Pd/AlGaN/GaN Schottky Diode. Appl. Phys. Express 2008, 1, 041102. [Google Scholar] [CrossRef]
- Lu, H.; Schaff, W.J.; Eastman, L.F.; Stutz, C.E. Surface charge accumulation of InN films grown by molecular-beam epitaxy. Appl. Phys. Lett. 2003, 82, 1736–1738. [Google Scholar] [CrossRef]
- Mahboob, I.; Veal, T.D.; McConville, C.F.; Lu, H.; Schaff, W.J. Intrinsic Electron Accumulation at Clean InN Surfaces. Phys. Rev. Lett. 2004, 92, 036804. [Google Scholar] [CrossRef] [PubMed]
- King, P.D.C.; Veal, T.D.; Jefferson, P.H.; Hatfield, S.A.; Piper, L.F.J.; McConville, C.F.; Fuchs, F.; Furthmüller, J.; Bechstedt, F.; Lu, H.; et al. Determination of the branch-point energy of InN: Chemical trends in common-cation and common-anion semiconductors. Phys. Rev. B 2008, 77, 045316. [Google Scholar] [CrossRef]
- Guo, Y.H.; Zhang, Y.M.; Wu, W.X.; Liu, Y.X.; Zhou, Z.P. Transition metal (Pd, Pt, Ag, Au) decorated InN monolayer and theiradsorption properties towards NO2: Density Functional Theory study. Appl. Surf. Sci. 2018, 455, 106–114. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Q.; Meng, R.S.; Tan, C.J.; Liang, Q.H.; Jiang, J.K.; Ye, H.Y.; Chen, X.P. Adsorption of gas molecules on graphene-like InN monolayer: A first-principle study. Appl. Surf. Sci. 2017, 404, 291–299. [Google Scholar] [CrossRef]
- Lu, Y.S.; Chang, Y.H.; Hong, Y.L.; Lee, H.M.; Gwo, S.; Yeh, J.A. Investigation on and field effect transistors under electrolyte gate bias. Appl. Phys. Lett. 2009, 95, 102104. [Google Scholar] [CrossRef]
- Chang, Y.H.; Chang, K.K.; Gwo, S.; Yeh, J.A. Highly Sensitive Hydrogen Detection Using a Pt-Catalyzed InN Epilayer. Appl. Phys. Express 2010, 3, 114101. [Google Scholar] [CrossRef]
- Lee, C.T.; Chiua, Y.S.; Wang, X.Q. Performance enhancement mechanisms of passivated InN/GaN-heterostructured ion-selective field-effect-transistor pH sensors. Sens. Actuators B Chem. 2013, 181, 810–815. [Google Scholar] [CrossRef]
- Lu, Y.S.; Huang, C.C.; Yeh, J.A.; Chen, C.F.; Gwo, S. InN-based anion selective sensors in aqueous solutions. Appl. Phys. Lett. 2007, 91, 202109. [Google Scholar] [CrossRef]
- Lu, Y.S.; Ho, C.L.; Yeh, J.A.; Lin, H.W.; Gwo, S. Anion detection using ultrathin InN ion selective field effect transistors. Appl. Phys. Lett. 2008, 92, 212102. [Google Scholar] [CrossRef]
- Wang, K.; Miller, N.; Iwamoto, R.; Yamaguchi, T.; Mayer, M.A.; Araki, T.; Nanishi, Y.; Yu, K.M.; Haller, E.E.; Walukiewicz, W.; et al. Mg doped InN and confirmation of free holes in InN. Appl. Phys. Lett. 2011, 98, 042104. [Google Scholar] [CrossRef]
- Jones, R.E.; Yu, K.M.; Li, S.X.; Walukiewicz, W.; Ager, J.W.; Haller, E.E.; Lu, H.; Schaff, W.J. Evidence for p-Type Doping of InN. Phys. Rev. Lett. 2006, 96, 125505. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Liu, S.T.; Ma, N.; Feng, L.; Chen, G.; Xu, F.J.; Tang, N.; Huang, S.; Chen, K.J.; Zhou, S.Q.; et al. High-Electron-Mobility InN Layers Grown by Boundary-Temperature-Controlled Epitaxy. Appl. Phys. Express 2012, 5, 015502. [Google Scholar] [CrossRef]
- Wang, X.Q.; Che, S.B.; Ishitani, Y.; Yoshikawa, A. Hole mobility in Mg-doped-type InN films. Appl. Phys. Lett. 2008, 92, 132108. [Google Scholar] [CrossRef]
- Ma, N.; Wang, X.Q.; Liu, S.T.; Chen, G.; Pan, J.H.; Feng, L.; Xu, F.J.; Tang, N.; Shen, B. Hole mobility in wurtzite InN. Appl. Phys. Lett. 2011, 98, 192114. [Google Scholar] [CrossRef]
- Ma, N.; Wang, X.Q.; Xu, F.J.; Tang, N.; Shen, B.; Ishitani, Y.; Yoshikawa, A. Anomalous Hall mobility kink observed in Mg-doped InN: Demonstration of p-type conduction. Appl. Phys. Lett. 2010, 97, 222114. [Google Scholar] [CrossRef]
- Lundstrom, K.I.; Shivaraman, M.S.; Svensson, C.M. A Hydrogen-sensitive Pd-gate MOS Transistor. J. Appl. Phys. 1975, 46, 3876–3881. [Google Scholar] [CrossRef]
- Kim, H.; Jang, S. AlGaN/GaN HEMT based hydrogen sensor with platinum nanonetwork gate electrode. Curr. Appl. Phys. 2013, 13, 1746–1750. [Google Scholar] [CrossRef]
- Lim, W.; Wright, J.S.; Gila, B.P.; Pearton, S.J.; Ren, F.; Lai, W.T.; Chen, L.C.; Hu, M.S.; Chen, K.H. Selective-hydrogen sensing at room temperature with Pt-coated InN nanobelts. Appl. Phys. Lett. 2008, 93, 202109. [Google Scholar] [CrossRef]
- Guo, L.; Wang, X.Q.; Zheng, X.; Yang, X.; Xu, F.J.; Tang, N.; Lu, L.; Ge, W.K.; Shen, B.; Dmowski, L. Revealing of the transition from n- to p-type conduction of InN: Mg by photoconductivity effect measurement. Sci. Rep. 2014, 4, 4371. [Google Scholar] [CrossRef] [PubMed]
- Dmowski, L.; Baj, M.; Suski, T.; Przybytek, J.; Czernecki, R.; Wang, X.; Yoshikawa, A.; Lu, H.; Schaff, W.; Muto, D. Search for free holes in InN: Mg-interplay between surface layer and Mg-acceptor doped interior. J. Appl. Phys. 2009, 105, 123713. [Google Scholar] [CrossRef]
- Wang, X.Q.; Che, S.B.; Ishitani, Y.; Yoshikawa, A. Growth and properties of Mg-doped In-polar InN films. Appl. Phys. Lett. 2007, 90, 201913. [Google Scholar] [CrossRef]
- Bierwagen, O.; Choi, S.; Speck, J.S. Hall and Seebeck measurement of a p-n layer stack: Determining InN bulk hole transport properties in the presence of a strong surface electron accumulation layer. Phys. Rev. B 2012, 85, 165205. [Google Scholar] [CrossRef]
- Yoshikawa, A.; Wang, X.Q.; Ishitani, Y.; Uedono, A. Recent advances and challenges for successful p-type control of InN films with Mg acceptor doping by molecular beam epitaxy. Phys. Status Solidi A 2010, 207, 1011–1023. [Google Scholar] [CrossRef]
- Anderson, P.; Swartz, C.; Carder, D.; Reeves, R.; Durbin, S.; Chandril, S.; Myers, T. Buried-type layers in Mg-doped InN. Appl. Phys. Lett. 2006, 89, 184104. [Google Scholar] [CrossRef]
- Ma, N.; Wang, X.Q.; Liu, S.T.; Feng, L.; Chen, G.; Xu, F.J.; Tang, N.; Lu, L.W.; Shen, B. Deep donor state in InN: Temperature-dependent electron transport in the electron accumulation layers and its influence on Hall-effect measurements. Appl. Phys. Lett. 2011, 99, 182107. [Google Scholar] [CrossRef]
- Sun, X.X.; Wei, J.D.; Wang, X.Q.; Wang, P.; Li, S.F.; Waag, A. Anomalous surface potential behavior observed in InN by photoassisted Kelvin probe force microscopy. Appl. Phys. Lett. 2017, 110, 222103. [Google Scholar] [CrossRef]
- Song, J.H.; Akiyama, T.; Freeman, A.J. Stabilization of Bulk p-Type and Surface n-Type Carriers in Mg-Doped InN {0001} Films. Phys. Rev. Lett. 2008, 101, 186801. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.C.; Tsai, Y.Y.; Lin, K.W.; Chen, H.I.; Liu, W.C. Hydrogen sensing properties of a Pt-oxide- Al0.24Ga0.76 As high-electron-mobility transistor. Appl. Phys. Lett. 2005, 86, 112103. [Google Scholar] [CrossRef]
- Tsai, T.H.; Chen, H.I.; Chang, C.F.; Chiu, P.S.; Liu, Y.C.; Chen, L.Y.; Chen, T.P.; Liu, W.C. Hydrogen sensing properties of a metamorphic high electron mobility transistor. Appl. Phys. Lett. 2009, 94, 012102. [Google Scholar] [CrossRef]
- Rai, S.K.; Kao, K.W.; Gow, S.J.; Yeh, J.A. Ultrathin (~10 nm) InN Resistive Gas Sensor for Selectivity of Breath Ammonia Gas By Using Temperature Modulation. In Proceedings of the 11th IEEE Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Sendai, Japan, 17–20 April 2016. [Google Scholar]
- Lo, C.F.; Chang, C.Y.; Chu, B.H.; Pearton, S.J.; Dabiran, A.; Chow, P.P.; Ren, F. Effect of humidity on hydrogen sensitivity of Pt-gated AlGaN/GaN high electron mobility transistor based sensors. Appl. Phys. Lett. 2010, 96, 232106. [Google Scholar] [CrossRef]
- Belabbes, A.; Kioseoglou, J.; Komninou, P.; Karakostas, T. Energetics of oxygen adsorption and incorporation at InN polar surface: A first-principles study. Phys. Status Solidi C 2009, 6, S364. [Google Scholar] [CrossRef]
Sample | Mobility (cm2/(V × s)) | Ns (1013/cm2) | Rs (Ω/Square) | Mg Cell Temperature (°C) | Thickness (nm) |
---|---|---|---|---|---|
A | 91 | −7.9 | 863.7 | 250 | 15 |
B | 107 | −6.5 | 880.2 | 250 | 15 |
C | 193 | −5.6 | 578.6 | —— | 15 |
D | 227 | −6.4 | 430.3 | 220 | 15 |
E | 138 | −31.0 | 147.6 | 280 | 15 |
F | 127 | −19.5 | 251.1 | 250 | 500 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Wang, X.; Chen, Z.; Wang, P.; Qi, Q.; Zheng, X.; Sheng, B.; Liu, H.; Wang, T.; Rong, X.; et al. Enhanced Hydrogen Detection Based on Mg-Doped InN Epilayer. Sensors 2018, 18, 2065. https://doi.org/10.3390/s18072065
Wang S, Wang X, Chen Z, Wang P, Qi Q, Zheng X, Sheng B, Liu H, Wang T, Rong X, et al. Enhanced Hydrogen Detection Based on Mg-Doped InN Epilayer. Sensors. 2018; 18(7):2065. https://doi.org/10.3390/s18072065
Chicago/Turabian StyleWang, Shibo, Xinqiang Wang, Zhaoying Chen, Ping Wang, Qi Qi, Xiantong Zheng, Bowen Sheng, Huapeng Liu, Tao Wang, Xin Rong, and et al. 2018. "Enhanced Hydrogen Detection Based on Mg-Doped InN Epilayer" Sensors 18, no. 7: 2065. https://doi.org/10.3390/s18072065
APA StyleWang, S., Wang, X., Chen, Z., Wang, P., Qi, Q., Zheng, X., Sheng, B., Liu, H., Wang, T., Rong, X., Li, M., Zhang, J., Yang, X., Xu, F., & Shen, B. (2018). Enhanced Hydrogen Detection Based on Mg-Doped InN Epilayer. Sensors, 18(7), 2065. https://doi.org/10.3390/s18072065