Temperature and Vibration Dependence of the Faraday Effect of Gd2O3 NPs-Doped Alumino-Silicate Glass Optical Fiber
<p>Refractive index profile of the Gd<sub>2</sub>O<sub>3</sub> NPs-doped fiber.</p> "> Figure 2
<p>Experimental set-up to measure the temperature-dependent FRA of the Gd<sub>2</sub>O<sub>3</sub> NPs-doped fiber under magnetic field induced by the DC solenoid.</p> "> Figure 3
<p>(<b>a</b>) TEM image; (<b>b</b>) size distribution; (<b>c</b>) XPS spectrum; and (<b>d</b>) UV-VIS spectrum of the Gd<sub>2</sub>O<sub>3</sub> NPs-doped fiber preform.</p> "> Figure 4
<p>(<b>a</b>) TEM image with the EDS compositional maps for Gd, Si, and O and (<b>b</b>) absorption spectrum of the Gd<sub>2</sub>O<sub>3</sub> NPs-doped fiber.</p> "> Figure 5
<p>(<b>a</b>) Variation of the FRA with the increase of magnetic field at room temperature and (<b>b</b>) change in polarization states on a Poincare sphere of the Gd<sub>2</sub>O<sub>3</sub> NPs-doped fiber.</p> "> Figure 6
<p>(<b>a</b>) Variation of the FRA of the Gd<sub>2</sub>O<sub>3</sub> NPs-doped fiber with temperature under varied magnetic fields and comparison of the FRA of the Gd<sub>2</sub>O<sub>3</sub> NPs-doped fiber and the reference fiber; (<b>b</b>) with temperature under 0.142 T; and (<b>c</b>) with magnetic field under varied temperature. The lines shown in the figures were obtained by the linear regression fitting.</p> "> Figure 7
<p>Variation of the FRA as function of the time under 0.142 T at 120 °C.</p> "> Figure 8
<p>Vibration dependence of the Gd<sub>2</sub>O<sub>3</sub> NPs-doped fiber and the reference fiber as a function of (<b>a</b>) acceleration under the frequency of 60 Hz and (<b>b</b>) frequency under the acceleration of 10 g. The inset in (<b>b</b>) shows the enlarged DPA of the Gd<sub>2</sub>O<sub>3</sub> NPs-doped fiber from 45 Hz to 50 Hz with the interval of 1 Hz.</p> ">
Abstract
:1. Introduction
2. Theory
Temperature Dependence of Faraday Rotation in Magnetic Materials
3. Experiments
3.1. Preform Fabrication
3.2. Verification of Existence of Gd2O3 Nano-Particles
3.3. Optical Fiber Drawing and Characterization
3.4. Faraday Rotation Measurement
4. Results and Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Weber, M.J. CRC Handbook of Laser Science and Technology. Supplement 2: Optical Materials; CRC Press: Boca Raton, FL, USA, 1995; pp. 372–382. ISBN 0-8493-3507-8. [Google Scholar]
- Ainslie, B.J.; Craig, S.P.; Davey, S.T. The absorption and fluorescence spectra of rare earth ions in silica-based monomode fiber. J. Lightwave Technol. 1988, 6, 287–293. [Google Scholar] [CrossRef]
- Wang, G.; Peng, Q.; Li, Y. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Valiev, U.V.; Zvezdin, A.K.; Krinchik, G.S.; Levitin, R.Z.; Mukimov, K.M.; Popov, A.I. Faraday effect of rare-earth iron garnets in strong magnetic fields. Sov. Phys. JETP 1983, 58, 181–189. [Google Scholar]
- Ballato, J.; Snitzer, E. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications. Appl. Opt. 1995, 34, 6848–6854. [Google Scholar] [CrossRef] [PubMed]
- Bünzli, J.-C.G.; Piguet, C. Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 2005, 34, 1048–1077. [Google Scholar] [CrossRef] [PubMed]
- Armelao, L.; Quici, S.; Barigelletti, F.; Accorsi, G.; Bottaro, G.; Cavazzini, M.; Tondello, E. Design of luminescent lanthanide complexes: From molecules to highly efficient photo-emitting materials. Mater. Coordin. Chem. Rev. 2010, 254, 487–505. [Google Scholar] [CrossRef]
- Schmidt, M.A.; Wondraczek, L.; Lee, H.W.; Granzow, N.; Da, N.; Russell, P.S.J. Complex Faraday rotation in microstructured magneto-optical fiber waveguides. Adv. Mater. 2011, 23, 2681–2688. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Hu, W.; Shao, Y. Density functional theory calculations for the structural, electronic, and magnetic properties of (Gd2O3)n0,±1 Clusters with n = 1–10. J. Phys. Chem. C 2015, 119, 8349–8356. [Google Scholar] [CrossRef]
- Mukherjee, S.; Dasgupta, P.; Jana, P.K. Size-dependent dielectric behaviour of magnetic Gd2O3 nanocrystals dispersed in a silica matrix. J. Phys. D Appl. Phys. 2008, 41, 215004. [Google Scholar] [CrossRef]
- Sharma, P.; Brown, S.C.; Walter, G.; Santra, S.; Scott, E.; Ichikawa, H.; Fukumori, Y.; Moudgil, B.M. Gd nanoparticulates: From magnetic resonance imaging to neutron capture therapy. Adv. Powder Technol. 2007, 18, 663–698. [Google Scholar] [CrossRef]
- Erskine, J.L.; Stern, E.A. Magneto-optic Kerr effects in gadolinium. Phys. Rev. B 1973, 8, 1239–1255. [Google Scholar] [CrossRef]
- Sun, L.; Jiang, S.; Marciante, J.R. Compact all-fiber optical Faraday components using 65-wt%-terbium doped fiber with a record Verdet constant of −32 rad/(Tm). Opt. Express 2010, 18, 12191–12196. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, H.; Dong, W.; Pang, F.; Wen, J.; Chen, Z.; Wang, T. Fabrication of europium-doped silica optical fiber with high Verdet constant. Opt. Express 2016, 24, 18709–18717. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Yang, H.; Kim, B.H.; Peak, U.C.; Han, W.-T. Fabrication of Eu2+ doped fiber and its Faraday rotation characteristics. In Proceedings of the 9th Optoelectronics and Communications Conference/3rd International Conference on Optical Internet, Yokohama, Japan, 12–16 July 2004; pp. 512–513. [Google Scholar]
- Kim, Y.; Ju, S.; Jeong, S.; Jang, M.-J.; Kim, J.-Y.; Lee, N.-H.; Jung, H.-K.; Han, W.-T. Influence of gamma-ray irradiation on Faraday effect of Cu-doped germane-silicate optical fiber. Nucl. Instr. Meth. Phys. Res. B 2015, 344, 39–43. [Google Scholar] [CrossRef]
- Watekar, P.R.; Yang, H.Y.; Ju, S.; Han, W.-T. Enhanced current sensitivity in the optical fiber doped with CdSe quantum dots. Opt. Express 2009, 17, 3157–3164. [Google Scholar] [CrossRef] [PubMed]
- Watekar, P.R.; Ju, S.; Kim, S.-A.; Jeong, S.; Kim, Y.; Han, W.-T. Development of a highly sensitive compact sized optical fiber current sensor. Opt. Express 2010, 18, 17096–17105. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Ju, S.; Jeong, S.; Kim, Y.; Han, W.-T. Fabrication and magneto-optic property of the optical fiber incorporated with Cd0.5Mn0.5Te particles. In Proceedings of the Optical Society of Korea Summer Meeting, Jeju, Korea, 27–29 August 2012. [Google Scholar]
- Bohnert, K.; Gabus, P.; Nehring, J.; Brändle, H. Temperature and vibration insensitive fiber-optic current sensor. J. Lightwave Technol. 2002, 20, 267–276. [Google Scholar] [CrossRef]
- Becquerel, H. The Faraday and Zeeman effects. C. R. Acad. Sci. 1897, 125, 679–685. [Google Scholar]
- Williams, P.A.; Rose, A.H.; Day, G.W.; Milner, T.E.; Deeter, M.N. Temperature dependence of the Verdet constant in several diamagnetic glasses. Appl. Opt. 1991, 30, 1176–1178. [Google Scholar] [CrossRef] [PubMed]
- Van Vleck, J.H.; Hebb, M.H. On the paramagnetic rotation of tysonite. Phys. Rev. 1934, 46, 17–32. [Google Scholar] [CrossRef]
- Van Vleck, J.H. The Theory of Electric and Magnetic Susceptibilities; Oxford University Press: New York, NY, USA, 1932; ISBN 0-1985-1243-0. [Google Scholar]
- Imaizumi, D.; Hayakawa, T.; Nogami, M. Faraday rotation effects of Mn2+-modified Tb2O3-B2O3 glass in pulsed magnetic field. J. Lightwave Technol. 2002, 20, 740–744. [Google Scholar] [CrossRef]
- Ju, S.; Linganna, K.; Kim, B.H.; Boo, S.; An, Y.H.; Han, W.-T. UV photoluminescence of alumino-germano-silicate glass optical fiber incorporated with Gd2O3 nano-particles upon illumination of Xenon-lamp. J. Nanosci. Nanotechnol. 2018, 18, 2006–2009. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, T.; Ollier, N.; Vezin, H.; Gonnet, C. Clusters dissolution of Yb3+ in codoped SiO2-Al2O3-P2O5 glass fiber and its relevance to photodarkening. J. Chem. Phys. 2012, 136, 014503. [Google Scholar] [CrossRef] [PubMed]
- Barua, P.; Sekiya, E.H.; Saito, K.; Ikushima, A.J. Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass. J. Non-Cryst. Solids 2008, 354, 4760–4764. [Google Scholar] [CrossRef]
- Monteil, A.; Chaussedent, S.; Alombert-Goget, G.; Gaumer, N.; Obriot, J.; Ribeiro, S.J.L.; Messaddeq, Y.; Chiasera, A.; Ferrari, M. Clustering of rare earth in glasses, aluminum effect: Experiments and modeling. J. Non-Cryst. Solids 2004, 348, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.Z.; Arndt, J. Wavelength dependence of the Faraday effect in glassy SiO2. J. Phys. Chem. Solids 1999, 60, 1689–1692. [Google Scholar] [CrossRef]
- Villaverde, A.B.; Vasconcellos, E.C.C. Magnetooptical dispersion of Hoya glasses: AOT-5, AOT-44B, and FR-5. Appl. Opt. 1982, 21, 1347–1348. [Google Scholar] [CrossRef] [PubMed]
- Yamane, M.; Asahara, Y. Glasses for Photonics; Cambridge University Press: Cambridge, UK, 2000; pp. 242–263. ISBN 0-05210-1861-7. [Google Scholar]
- Lin, S.-L.; Hwang, C.-S. Structures of CeO2-Al2O3-SiO2 glasses. J. Non-Cryst. Solids 1996, 202, 61–67. [Google Scholar] [CrossRef]
- Ganster, P.; Benoit, M.; Kob, W.; Delaye, J.-M. Structural properties of a calcium aluminosilicate glass from molecular-dynamics simulations: A finite size effects study. J. Chem. Phys. 2004, 120, 10172–10181. [Google Scholar] [CrossRef] [PubMed]
- Lægsgaard, J. Theory of Al2O3 incorporation in SiO2. Phys. Rev. B 2002, 65, 174104. [Google Scholar] [CrossRef] [Green Version]
- Bubnov, M.M.; Vechkanov, V.N.; Gur’yanov, A.N.; Zotov, K.V.; Lipatov, D.S.; Likhachev, M.E.; Yashkov, M.V. Fabrication and Optical Properties of Fibers with an Al2O3–P2O5–SiO2 Glass Core. Inorg. Mater. 2009, 45, 444–449. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992; pp. 152–153. ISBN 0-9627-0262-5. [Google Scholar]
- Zheng, L.; Cheng, X.; Cao, D.; Zhang, D.; Wang, Z.; Xu, D.; Xia, C.; Shen, L.; Yu, Y. Al2O3–Gd2O3 double-films grown on graphene directly by H2O-assisted atomic layer deposition. RSC Adv. 2014, 4, 44296–44301. [Google Scholar] [CrossRef]
- Moretti, F.; Chiodini, N.; Fasoli, M.; Griguta, L.; Vedda, A. Optical absorption and emission properties of Gd3+ in silica host. J. Lumin. 2007, 126, 759–763. [Google Scholar] [CrossRef]
- Martino, D.D.; Chiodini, N.; Fasoli, M.; Moretti, F.; Vedda, A.; Baraldi, A.; Buffagni, E.; Capelletti, R.; Mazzera, M.; Nikl, M.; et al. Gd-incorporation and luminescence properties in sol–gel silica glasses. J. Non-Cryst. Solids 2008, 354, 3817–3823. [Google Scholar] [CrossRef]
- Kumar, P.A.; Rai, D.K.; Rai, S.B. Luminescence of Gd3+ ions doped in oxyfluoroborate glass. Solid State Commun. 2001, 117, 387–392. [Google Scholar] [CrossRef]
- Wybourne, B.G. Energy levels of trivalent gadolinium and ionic contributions to the ground-state splitting. Phys. Rev. 1966, 148, 317–327. [Google Scholar] [CrossRef]
- Rahman, A.T.M.A.; Vasilev, K.; Majewski, P. Ultra small Gd2O3 nanoparticles: Absorption and emission properties. J. Colloid Interface Sci. 2011, 354, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Kirm, M.; Krupa, J.C.; Makhov, V.N.; True, M.; Vielhauer, S.; Zimmerer, G. High-resolution vacuum ultraviolet spectroscopy of 5d-4f transitions in Gd and Lu fluorides. Phys. Rev. B 2004, 70, 241101. [Google Scholar] [CrossRef]
- Wegh, R.T.; Donker, H.; Meijerink, A.; Lamminmäki, R.J.; Hölsä, J. Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF4. Phys. Rev. B 1997, 56, 13841–13848. [Google Scholar] [CrossRef]
- Hirai, T.; Hashimoto, S.; Sakuragi, S.; Ohno, N. 4f-5d absorption of gadolinium ions in sodium gadolinium tetrafluorides. Chem. Phys. Lett. 2007, 446, 138–141. [Google Scholar] [CrossRef]
- Stone, J. Reduction of OH absorption in optical fibers by OH → OD isotope exchange. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 609–621. [Google Scholar] [CrossRef]
- Wunderlich, J.A.; DeShazer, L.G. Visible optical isolator using ZnSe. Appl. Opt. 1977, 16, 1584–1587. [Google Scholar] [CrossRef] [PubMed]
Verdet Constant (rad/(T·m)) | ||||||
---|---|---|---|---|---|---|
at 0.037 T | at 0.073 T | at 0.107 T | at 0.142 T | Average | ||
Temperature (°C) | 25 | 3.15 | 3.18 | 3.16 | 3.18 | 3.17 |
40 | 3.16 | 3.19 | 3.18 | 3.19 | 3.18 | |
60 | 3.13 | 3.15 | 3.16 | 3.18 | 3.16 | |
80 | 3.26 | 3.20 | 3.18 | 3.19 | 3.21 | |
100 | 3.19 | 3.18 | 3.19 | 3.19 | 3.19 | |
120 | 3.20 | 3.16 | 3.21 | 3.19 | 3.19 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, S.; Kim, J.; Linganna, K.; Watekar, P.R.; Kang, S.G.; Kim, B.H.; Boo, S.; Lee, Y.; An, Y.H.; Kim, C.J.; et al. Temperature and Vibration Dependence of the Faraday Effect of Gd2O3 NPs-Doped Alumino-Silicate Glass Optical Fiber. Sensors 2018, 18, 988. https://doi.org/10.3390/s18040988
Ju S, Kim J, Linganna K, Watekar PR, Kang SG, Kim BH, Boo S, Lee Y, An YH, Kim CJ, et al. Temperature and Vibration Dependence of the Faraday Effect of Gd2O3 NPs-Doped Alumino-Silicate Glass Optical Fiber. Sensors. 2018; 18(4):988. https://doi.org/10.3390/s18040988
Chicago/Turabian StyleJu, Seongmin, Jihun Kim, Kadathala Linganna, Pramod R. Watekar, Seong Gu Kang, Bok Hyeon Kim, Seongjae Boo, Youjin Lee, Yong Ho An, Cheol Jin Kim, and et al. 2018. "Temperature and Vibration Dependence of the Faraday Effect of Gd2O3 NPs-Doped Alumino-Silicate Glass Optical Fiber" Sensors 18, no. 4: 988. https://doi.org/10.3390/s18040988
APA StyleJu, S., Kim, J., Linganna, K., Watekar, P. R., Kang, S. G., Kim, B. H., Boo, S., Lee, Y., An, Y. H., Kim, C. J., & Han, W. -T. (2018). Temperature and Vibration Dependence of the Faraday Effect of Gd2O3 NPs-Doped Alumino-Silicate Glass Optical Fiber. Sensors, 18(4), 988. https://doi.org/10.3390/s18040988