Investigation of Wavenumber Domain Imaging Algorithm for Ground-Based Arc Array SAR
<p>Ground-based arc array synthetic aperture radar (GB-AA-SAR) system: (<b>a</b>) Arc antenna array; (<b>b</b>) Configuration of GB-AA-SAR system.</p> "> Figure 2
<p>Observation geometric model of GB-AA-SAR.</p> "> Figure 3
<p>Geometric model for azimuth sampling analysis.</p> "> Figure 4
<p>Wavenumber domain imaging processing flow chart.</p> "> Figure 5
<p>Azimuth angle resolution of GB-AA-SAR: (<b>a</b>) Azimuth angle resolution for different arc radii; (<b>b</b>) Azimuth angle resolution for different antenna beamwidths.</p> "> Figure 6
<p>Two-dimensional (2D) imaging results of a point target and their respective azimuth profiles with different algorithms: (<b>a</b>,<b>d</b>) the proposed algorithm; (<b>b</b>,<b>e</b>) back projection algorithm; (<b>c</b>,<b>f</b>) omega-k algorithm.</p> "> Figure 7
<p>Distribution of the point targets.</p> "> Figure 8
<p>Imaging results of the targets with different distances and different azimuth angles. (<b>a</b>) Point targets at (600 m, 0°); (<b>b</b>) Point targets at (10 m, 0°); (<b>c</b>) Point targets at (600 m, 30°); (<b>d</b>) Point targets at (600 m, 45°).</p> ">
Abstract
:1. Introduction
2. Ground-Based Arc Array SAR System
2.1. Arc Antenna Array and System Configuration
2.2. Sampling Criteria of Ground-Based Arc Array SAR
2.3. Comparison with GB-LA-SAR
3. Ground-Based Arc Array SAR Wavenumber Domain Imaging Algorithm
3.1. Wavenumber Domain Imaging Algorithm for GB-AA-SAR
- Step 1
- Perform an IFFT on the measured echo data SIF(t, θn) with respect to the fast time t in the range direction.
- Step 2
- Compensate the RVP using phase factor H, and obtain the result SRVP(t, θn).
- Step 3
- Perform the 2D FFT of the SRVP(t, θn) with respect to t and θn to obtain the 2D frequency domain signal Skr, kθ.
- Step 4
- For R = Ri, realize a numerical solution in the wavenumber domain to acquire the stationary phase Ѱi.
- Step 5
- Compensate the phase Ѱi; then, perform range accumulation in order to accomplish the focus procedure at R = Ri.
- Step 6
- Repeat Steps 4 to 5 for all of the available Ri, which can be rapidly implemented by parallel processing, then perform azimuth IFFT to the accumulated result SR, kθ to accomplish the focus procedure in the azimuth direction.
- Step 7
- Finally, display the SAR image.
3.2. Range Resolution and Azimuth Angular Resolution
4. Numerical Simulation Experiments
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tarchi, D.; Casagli, N.; Fanti, R.; Leva, D.D.; Luzi, G.; Pasuto, A.; Pieraccini, M.; Silvano, S. Landslide monitoring by using ground-based SAR interferometry: An example of application to the Tessina landslide in Italy. Eng. Geol. 2003, 68, 15–30. [Google Scholar] [CrossRef]
- Luzi, G.; Pieraccini, M.; Mecatti, D.; Noferini, L.; Guidi, G.; Moia, F.; Atzeni, C. Ground-based radar interferometry for landslides monitoring: Atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2454–2466. [Google Scholar] [CrossRef]
- Leva, D.; Nico, G.; Tarchi, D.; Fortuny-Guasch, J.; Sieber, A.J. Temporal analysis of a landslide by means of a ground-based SAR Interferometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 745–752. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Luzi, G.; Cuevas, M.; Devanthéry, N. Deformation monitoring using ground-based SAR data. Eng. Geol. Territ. 2015, 5, 137–140. [Google Scholar]
- Noferini, L.; Pieraccini, M.; Mecatti, D.; Luzi, G.; Atzeni, C.; Tamburini, A.; Broccolato, M. Permanent scatterers analysis for atmospheric correction in ground-based SAR interferometry. IEEE Trans. Geosci. Remote Sen. 2005, 43, 1459–1471. [Google Scholar] [CrossRef]
- Iglesias, R.; Fabregas, X.; Aguasca, A.; Mallorqui, J.J.; López-Martínez, C.; Gili, J.A.; Corominas, J. Atmospheric Phase Screen Compensation in Ground-Based SAR with a Multiple-Regression Model over Mountainous Regions. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2436–2449. [Google Scholar] [CrossRef]
- Caduff, R.; Schlunegger, F.; Kos, A.; Wiesmann, A. A review of terrestrial radar interferometry for measuring surface change in the geosciences. Earth Surf. Process. Landf. 2015, 40, 208–228. [Google Scholar] [CrossRef]
- Klausing, H.; Keydel, W. Feasibility of a synthetic aperture radar with rotating antennas (ROSAR). In Proceedings of the IEEE International Radar Conference, Arlington, VA, USA, 7–10 May 1990; pp. 3815–3821. [Google Scholar]
- Lee, H.; Lee, J.H.; Kim, K.E.; Sung, N.H.; Cho, S.J. Development of a truck-mounted arc-scanning synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2773–2779. [Google Scholar] [CrossRef]
- Luo, Y.; Song, H.; Wang, R.; Deng, Y.; Zhao, F.; Xu, Z. Arc FMCW SAR and applications in ground monitoring. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5989–5998. [Google Scholar] [CrossRef]
- Pieraccini, M.; Miccinesi, L. ArcSAR: Theory, Simulations, and Experimental Verification. IEEE Trans. Microw. Theory Tech. 2017, 65, 293–301. [Google Scholar] [CrossRef]
- Tarchi, D.; Oliveri, F.; Sammartino, P.F. MIMO radar and ground-based SAR imaging systems: Equivalent approaches for remote sensing. IEEE Trans. Geosci. Remote Sens. 2013, 51, 425–435. [Google Scholar] [CrossRef]
- Broussolle, J.; Kyovtorov, V.; Basso, M.; Castiglione, G.F.D.S.E.; Morgado, J.F.; Giuliani, R.; Oliveri, F.; Sammartino, P.F.; Tarchi, D. MELISSA, a new class of ground based InSAR system. An example of application in support to the Costa Concordia emergency. ISPRS J. Photogramm. Remote Sens. 2014, 91, 50–58. [Google Scholar] [CrossRef]
- Huang, P.P.; Tan, W.X.; Su, Y. MIMO-SAR imaging technology for helicopter-borne based on arc antenna array. In Proceedings of the International Geoscience and Remote Sensing Symposium, Milan, Italy, 26–31 July 2015; pp. 1801–1804. [Google Scholar]
- Soumekh, M. Synthetic Aperture Radar Signal Processing with Matlab Algorithms; Wiley: New York, NY, USA, 1999. [Google Scholar]
- Dallinger, A.; Schelkshorn, S.; Detlefsen, J. Efficient omega-k algorithm for circular SAR and cylindrical reconstruction areas. Adv. Radio Sci. 2006, 4, 85–91. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, F. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, CO, USA, 2004; pp. 30–45. [Google Scholar]
- Fortuny, J. A fast and accurate far-field pseudo polar format radar imaging algorithm. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1187–51196. [Google Scholar] [CrossRef]
Symbol | Parameters | GB-AA-SAR | GB-LA-SAR |
---|---|---|---|
Rarc | Arc radius | 0.6 m | — — |
θs | Antenna beamwidth | 60° | 60° |
La | Length | 1.257 m | 1.257 m |
Na | Number of antennas (T/R) | 71 | 71 |
∆θ | Sampling interval | 0.843° | 0.009 m |
θarc | View angle range | [−60°, 60°] | [−30°, 30°] |
Symbol | Parameters | Value |
---|---|---|
fc | Center frequency | 16.5 GHz |
Br | Bandwidth | 1 GHz |
Rarc | Arc radius | 0.6 m |
K | Frequency modulation rate | 104 GHz/s |
Frequency modulation time | 0.1 ms | |
θs | Antenna beamwidth | 60° |
La | Arc length | 1.257 m |
θarc | Arc angle range | [−60°, 60°] |
Na | Number of antennas (T/R) | 71 |
∆θ | Angle sampling interval | 0.843° |
Measure Parameters | Our Method | BP | Efficient Omega-k | |
---|---|---|---|---|
Range | IRW (m) | 0.13125 | 0.13125 | 0.13163 |
PSLR (dB) | −13.2643 | −13.2658 | −13.2535 | |
ISLR (dB) | −9.5756 | −9.5762 | −9.5749 | |
Azimuth | IRW (°) | 0.76875 | 0.76875 | 0.8500 |
PSLR (dB) | −12.5289 | −12.5355 | −6.1867 | |
ISLR (dB) | −9.4189 | −9.4248 | −5.6380 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Sun, J.; Tan, W.; Huang, P.; Han, K. Investigation of Wavenumber Domain Imaging Algorithm for Ground-Based Arc Array SAR. Sensors 2017, 17, 2950. https://doi.org/10.3390/s17122950
Huang Z, Sun J, Tan W, Huang P, Han K. Investigation of Wavenumber Domain Imaging Algorithm for Ground-Based Arc Array SAR. Sensors. 2017; 17(12):2950. https://doi.org/10.3390/s17122950
Chicago/Turabian StyleHuang, Zengshu, Jinping Sun, Weixian Tan, Pingping Huang, and Kuoye Han. 2017. "Investigation of Wavenumber Domain Imaging Algorithm for Ground-Based Arc Array SAR" Sensors 17, no. 12: 2950. https://doi.org/10.3390/s17122950
APA StyleHuang, Z., Sun, J., Tan, W., Huang, P., & Han, K. (2017). Investigation of Wavenumber Domain Imaging Algorithm for Ground-Based Arc Array SAR. Sensors, 17(12), 2950. https://doi.org/10.3390/s17122950