Signal-to-Noise Ratio Enhancement Based on Empirical Mode Decomposition in Phase-Sensitive Optical Time Domain Reflectometry Systems
<p>Block diagram representing the five procedures to achieve EMD.</p> "> Figure 2
<p>The resulting EMD components from the raw data (<b>a</b>) The raw data and the components IMF1-IMF4; (<b>b</b>) The components IMF5-IMF8 and RES.</p> "> Figure 3
<p>PCC between raw data and each IMFs.</p> "> Figure 4
<p>Another simulation experiment with different vibration events (<b>a</b>) The first vibration events consisted of a DC component, Gaussian white noise and sinusoidal signal; (<b>b</b>) PCC between the first vibration events and each IMFs; (<b>c</b>) The second vibration events consisted of a DC component, Gaussian white noise and chirp signal; (<b>d</b>) PCC between the second vibration events and each IMFs.</p> "> Figure 5
<p>The experimental setup of the φ-OTDR system.</p> "> Figure 6
<p>(<b>a</b>) Original Rayleigh backscattering curves for the vibration event of 100 Hz; (<b>b</b>) Denoised Rayleigh backscattering curves obtained by the EMD-PCC denoising method.</p> "> Figure 7
<p>Location information processed by different methods. (<b>a</b>) Moving average and moving differential method; (<b>b</b>) EMD-soft denoising method; (<b>c</b>) Wavelet denoising method; (<b>d</b>) EMD-PCC denoising method.</p> "> Figure 8
<p>Location information processed by different methods for vibration event of 1.2 kHz. (<b>a</b>) Moving average and moving differential method; (<b>b</b>) EMD-soft denoising method; (<b>c</b>) Wavelet denoising method; (<b>d</b>) EMD-PCC denoising method.</p> "> Figure 9
<p>SNR of location information for 100 Hz and 1.2 kHz vibration events obtained by different methods.</p> "> Figure 10
<p>Frequency spectrum of two vibration events. (<b>a</b>) Frequency of 100 Hz; (<b>b</b>) Frequency of 1.2 KHz.</p> ">
Abstract
:1. Introduction
2. EMD Denoising Method
- (1)
- Identify the extrema of x(t).
- (2)
- Connect the local maxima and minima by a cubic spline as the upper and lower envelopes respectively, which should involve all the data between them.
- (3)
- Calculate the mean of two envelopes designated as m(t).
- (4)
- Compute the difference between x(t) and m(t) and get the first component h(t), .
- (5)
- If h(t) is an IMF, compute the difference between x(t) and h(t) and get the first residual component r(t). R(t) is treated as the x(t) and repeat step 1 to 5 to acquire the surplus IMFs. Otherwise, h(t) is treated as the x(t) and repeat step 1 to 5 until it is an IMF.
3. Experimental Setup and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dakin, J.P.; Pearce, D.A.J.; Strong, A.P.; Wade, C.A. A novel distributed optical fibre sensing system enabling location of disturbances in a sagnac loop interferometer. Proc. SPIE 1988, 0838, 325–328. [Google Scholar]
- Sun, Q.Z.; Liu, D.M.; Wang, J.; Liu, H.R. Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer. Opt. Commun. 2008, 281, 1538–1544. [Google Scholar] [CrossRef]
- Yuan, L.B.; Ansari, F. White-light interferometric fiber-optic distributed strain-sensing system. Sens. Actuators A 1997, 63, 177–181. [Google Scholar] [CrossRef]
- Hong, X.B.; Wu, J.; Zuo, C.; Liu, F.S.; Guo, H.X.; Xu, K. Dual Michelson interferometers for distributed vibration detection. Appl. Opt. 2011, 50, 4333–4338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Bao, X.Y. Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system. Opt. Express 2008, 16, 10240–10247. [Google Scholar] [CrossRef] [PubMed]
- Juarez, J.C.; Maier, E.W.; Choi, K.N.; Taylor, H.F. Distributed fiber-optic intrusion sensor system. J. Lightwave Technol. 2005, 23, 2081–2087. [Google Scholar] [CrossRef]
- Martins, H.F.; Martin-Lopez, S.; Corredera, P.; Filograno, M.L.; Frazao, O.; Gonzalez-Herraez, G. High visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves. Proc. SPIE 2013, 8794, 236–242. [Google Scholar]
- Masoudi, A.; Belal, M.; Newson, T.P. A distributed optical fibre dynamic strain sensor based on phase-OTDR. Meas. Sci. Technol. 2013, 24, 085204. [Google Scholar] [CrossRef]
- Dong, Y.K.; Ba, D.X.; Jiang, T.F.; Zhou, D.W.; Zhang, H.Y.; Zhu, C.Y.; Lu, Z.W.; Li, H.; Chen, L.; Bao, X.Y. High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation. IEEE Photonics J. 2013, 5, 2600407. [Google Scholar] [CrossRef]
- Peng, F.; Wu, H.; Jia, X.H.; Rao, Y.J.; Wang, Z.N.; Peng, Z.P. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines. Opt. Express 2014, 22, 13804–13810. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, F.; Wang, X.C.; Pan, Y.; Sun, Z.Q.; Hua, J.; Zhang, X.P. Distributed Strain and Vibration Sensing System Based on Phase-Sensitive OTDR. IEEE Photonics Technol. Lett. 2015, 27, 1884–1887. [Google Scholar] [CrossRef]
- Tu, G.J.; Zhang, X.P.; Zhang, Y.X.; Fan, Z.; Xia, L.; Nakarmi, B. The Development of an Φ-OTDR System for Quantitative Vibration Measurement. IEEE Photonics Technol. Lett. 2015, 27, 1349–1352. [Google Scholar] [CrossRef]
- Healey, P. Fading in heterodyne OTDR. Electron. Lett. 1984, 20, 30–32. [Google Scholar] [CrossRef]
- Lu, Y.L.; Zhu, T.; Chen, L.; Bao, X.Y. Distributed Vibration Sensor Based on Coherent Detection of Phase-OTDR. J. Lightwave Technol. 2010, 28, 3243–3249. [Google Scholar]
- Qin, Z.G.; Chen, L.; Bao, X.Y. Wavelet Denoising Method for Improving Detection Perforamance of Distributed Vibration Sensor. IEEE Photonics Technol. Lett. 2012, 24, 542–544. [Google Scholar] [CrossRef]
- Zhu, T.; Xiao, X.H.; He, Q.; Diao, D.M. Enhancement of SNR and Spatial Resolution in φ-OTDR System by Using Two-Dimensional Edge Detection Method. J. Lightwave Technol. 2013, 31, 2851–2856. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.X.; Li, L.J.; Zhong, X. Signal-to-noise ratio enhancement of Phase -sensitive optical time-domain reflectometry based on power spectrum analysis. Opt. Eng. 2014, 53, 026106. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Rilling, G.; Flandrin, P.; Goncalvès, P. On Empirical Mode Decomposition and Its Algorithms. In Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP 2003), Grado, Italy, 8–11 June 2003. [Google Scholar]
- Boudraa, A.O.; Cexus, L.C.; Saidi, Z. EMD-Based Signal Noise Reduction. Int. J. Signal Process 2004, 1, 33–37. [Google Scholar]
- Omitaomu, O.A.; Protopopescu, V.A.; Ganguly, A.R. Empirical Mode Decomposition Technique with Conditional Mutual Information for Denoising Operational Sensor Data. IEEE Sens. J. 2011, 11, 2565–2575. [Google Scholar] [CrossRef]
- Hassan, M.; Boudaoud, S.; Terrien, J.; Karlsson, B.; Marque, C. Combination of Canonical Correlation Analysis and Empirical Mode Decomposition Applied to Denoising the Labor Electrohysterogram. IEEE Trans. Biomed. Eng. 2011, 58, 2441–2447. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Mitra, M. Empirical mode decomposition based ECG enhancement and QRS detection. Comput. Boil. Med. 2012, 42, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Mukaka, M.M. Statistics Corner: A guide to appropriate use of Correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Peng, Z.K.; Chu, F.L. Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography. Mech. Syst. Signal Process 2004, 18, 199–221. [Google Scholar] [CrossRef]
- Fang, G.; Xu, T.; Feng, S.; Li, F. Phase-sensitive Optical Time Domain Reflectometer Based on Phase Generated Carrier Algorithm. J. Lightwave Technol. 2015, 33, 2811–2816. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Wang, S.; Xue, N.; Peng, F.; Fan, M.; Sun, W.; Qian, X.; Rao, J.; Rao, Y. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Opt. Express 2016, 24, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.Q.; Lu, P.; Chen, L.; Bao, X.Y. Study of Φ-OTDR Stability for Dynamic Strain Measurement in Piezoelectric Vibration. Photonic Sens. 2016, 6, 199–208. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Z.; Chen, H.; Chang, J. Signal-to-Noise Ratio Enhancement Based on Empirical Mode Decomposition in Phase-Sensitive Optical Time Domain Reflectometry Systems. Sensors 2017, 17, 1870. https://doi.org/10.3390/s17081870
Qin Z, Chen H, Chang J. Signal-to-Noise Ratio Enhancement Based on Empirical Mode Decomposition in Phase-Sensitive Optical Time Domain Reflectometry Systems. Sensors. 2017; 17(8):1870. https://doi.org/10.3390/s17081870
Chicago/Turabian StyleQin, Zengguang, Hui Chen, and Jun Chang. 2017. "Signal-to-Noise Ratio Enhancement Based on Empirical Mode Decomposition in Phase-Sensitive Optical Time Domain Reflectometry Systems" Sensors 17, no. 8: 1870. https://doi.org/10.3390/s17081870
APA StyleQin, Z., Chen, H., & Chang, J. (2017). Signal-to-Noise Ratio Enhancement Based on Empirical Mode Decomposition in Phase-Sensitive Optical Time Domain Reflectometry Systems. Sensors, 17(8), 1870. https://doi.org/10.3390/s17081870