Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project
<p>Example of utility of the GLAM MODIS NDVI DBMS to track 2009 drought impact on crops in Buenos Aires district in Argentina.</p> "> Figure 2
<p>MODIS Rapid Response Interface in Crop Explorer.</p> "> Figure 3
<p>Using MODIS Rapid Response Imagery to Assess Impact of Tropical Storm Nargis, 2008.</p> "> Figure 4
<p>Example of near real time NDVI anomaly products for Africa. Data sources clockwise from upper left: AVHRR-VIg, AVHRR-N17, MODIS Terra, SPOT-Vegetation.</p> "> Figure 5
<p>A comparison between the 16-day composite data and the daily, BRDF corrected data for Northern Iraq and Syria. <a href="#remotesensing-02-01589-f005" class="html-fig">Figure 5</a>a–b show NDVI departure from mean (a) the 16-day MODIS NDVI data (b) from the daily BRDF corrected NDVI data. Areas in brown are indicative of lower than average NDVI values. <a href="#remotesensing-02-01589-f005" class="html-fig">Figure 5</a>c shows the BRDF-corrected NDVI image from April 14th, 2008, and <a href="#remotesensing-02-01589-f005" class="html-fig">Figure 5</a>d shows the mean NDVI for April 14, 2008. Selected crop sites marked with ‘X’ on images (a) and (d).</p> "> Figure 6
<p>Comparison of 16-day Composite NDV (pink)I with Daily BRDF Corrected NDVI (blue) for 3 Crop sites in Iraq, Syria and Turkey. Both the pink and blue graphs show similar crop phenology though crop development is more clearly depicted in the blue, daily BRDF corrected graph.</p> "> Figure 7
<p>Dynamic 250 m Global Croplands Map.</p> "> Figure 8
<p>Example of November to January CVI anomaly for East Africa. Left: 2006–2007 season, the most recent wetter than average season. Right: 2009–2010, the current seasonal CVI anomaly.</p> "> Figure 9
<p>Time series of lake level variations for Lake Kariba, Zambia, derived from satellite radar altimeter observations, blue (Topex/Poseidon), red (Jason-1), purple (Jason-2/OSTM) for the 1993–2010 period. Lower plot depicts a filtered version of the actual results (top) for visual inspection only.</p> ">
Abstract
:1. Introduction
1.1. NASA USDA Partnership
1.2. FAS Mission and Goals
2. GLAM
2.1. GLAM DBMS and Tools
2.2. MODIS Rapid Response
2.3. Long Term Data Archive
2.4. New Developments: Operational Research and Development
2.4.1. Near Real Time Surface Reflectance Products
2.4.2. BRDF-Corrected Very-Coarse Resolution Time-Series
2.4.3. New Value Added Products under Evaluation
2.4.3.1. Global Croplands Map
2.4.3.2. Enhanced Vegetation Index Products
2.4.3.3. Global Lake Level Products
3. GEO
4. Future Needs and Role of Earth Observations for Agricultural Monitoring
5. Conclusions
Acknowledgements
References
- Justice, C.; Becker-Reshef, I.; Parihar, J.S.; DeLince, J.; Leo, O.; Binfang, W.; Defourny, P.; Townshend, J.T.; Fan, J. The GEO Global Agricultural Monitoring System of Systems Task: An overview. In 33rd International Symposium on Remote Sensing of Environment; ISRSE: Stresa, Italy, May 2009. [Google Scholar]
- UN FAO. Assessment of the World Food Security; Report by the Committee on World Food Security from the Thirty First Session; FAO, UN: Rome, Italy, 2005. [Google Scholar]
- Becker-Reshef, I.; Justice, C.; Doorn, B.; Reynolds, C.; Anyamba, A.; Tucker, C.J. NASA’s contribution to the Group on Earth Observations (GEO) Global Agricultural Monitoring System of Systems. NASA Earth Observer 2009, 21, 24–29. [Google Scholar]
- Macdonald, R.B.; Hall, F.G. Global crop forecasting. Science 1980, 208, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Pinter, P.J.; Ritchie, J.C.; Hatfield, J.L.; Hart, G.F. The agricultural research service’s remote sensing program: An example of interagency collaboration. Photogramm. Eng. Remote Sensing 2003, 69, 615–618. [Google Scholar] [CrossRef]
- Knipling, E.B. Physical and physiological basis for the reflection of visible and near-infrared radiation from vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Leamer, R.W.; Weber, D.A.; Wiegand, C.L. Pattern recognition of soils and crops from space. Photogramm. Eng. Remote Sensing 1975, 41, 471–478. [Google Scholar]
- Allen, W.A.; Richardson, A.J. Interaction of light with a plant canopy. J. Opt. Soc. Amer. 1968, 58, 1023–1028. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of spectral remote sensing for agronomic decisions. Agron. J. 2008, 100, S117–S131. [Google Scholar] [CrossRef]
- Bauer, M.E. LACIE: An experiment in global crop forecasting. Crops Soils Mag. 1979, 31, 5–7. [Google Scholar]
- USDA. A Guide to USDA’s International Programs; USDA, 2007. Available online: www.csrees.usda.gov/nea/international/pdfs/vis_guide.pdf (accessed on January 23, 2010).
- USDA FAS. The Foreign Agricultural Service. Available online: http://www.fas.usda.gov/aboutfas.asp (accessed on January 23, 2010).
- Reynolds, C.A. Input data sources, climate normals, crop models, and data extraction routines utilized by PECAD. In Third International Conference on Geospatial Information in Agriculture and Forestry, Denver, CO, USA, 2001.
- USDA FAS. GLAM-Global Agricultural Monitoring. Available online: http://www.pecad.fas.usda.gov/glam.cfm (accessed on December 28, 2009).
- Kaupp, V.; Hutchinson, C.; Drake, S.; Haithcoat, T.; Leeuwen, W.V.; Likholetov, V.; Tralli, D.; Doorn, B. Benchmarking the USDA OGA DSS: A PECAD Update; Washington, DC, USA, 2007.
- Vermote, E.F.; El Saleous, N.Z.; Justice, C.O. Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens. Environ. 2002, 83, 97–111. [Google Scholar] [CrossRef]
- USDA FAS. World Agricultural Production. Bange, G., USDA World Agricultural Outlook Board, Williams, D., Eds.; Available online: http://www.fas.usda.gov/wap/circular/2009/09-01/productionfull01-09.pdf (accessed on January 23, 2010).
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.O.; Breon, F.M. Towards a Generalized Approach for Correction of the BRDF Effect in MODIS Directional Reflectances. IEEE Trans. Geosci. Remote Sens. 2009, 47, 898–908. [Google Scholar] [CrossRef]
- Pittman, K.W.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multiyear MODIS data. Remote Sens. 2010. submitted. [Google Scholar]
- Breiman, L. Bagging predictors. Mach Learn 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Justice, C.; Becker-Reshef, I. Report from the Workshop on Developing a Strategy for Global Agricultural Monitoring in the framework of Group on Earth Observations (GEO) 16–18 July 2007, FAO, Rome; University of Maryland: College Park, MD, USA, 2007. [Google Scholar]
- Oza, M.P.; Pandya, M.R.; Rajak, D.R. Evaluation and use of Resourcesat-1 data for agricultural applications. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 194–205. [Google Scholar] [CrossRef]
- Sai, M.V.R.S.; Rao, P.V.N. Utilization of Resourcesat-1 data for improved crop discrimination. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 206–210. [Google Scholar]
- Chang, J.; Hansen, M.C.; Pittman, K.; Carroll, M.; DiMiceli, C. Corn and soybean mapping in the united states using MODN time-series data sets. Agron. J. 2007, 99, 1654–1664. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Becker-Reshef, I.; Justice, C.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masuoka, E.; Schmaltz, J.; et al. Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project. Remote Sens. 2010, 2, 1589-1609. https://doi.org/10.3390/rs2061589
Becker-Reshef I, Justice C, Sullivan M, Vermote E, Tucker C, Anyamba A, Small J, Pak E, Masuoka E, Schmaltz J, et al. Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project. Remote Sensing. 2010; 2(6):1589-1609. https://doi.org/10.3390/rs2061589
Chicago/Turabian StyleBecker-Reshef, Inbal, Chris Justice, Mark Sullivan, Eric Vermote, Compton Tucker, Assaf Anyamba, Jen Small, Ed Pak, Ed Masuoka, Jeff Schmaltz, and et al. 2010. "Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project" Remote Sensing 2, no. 6: 1589-1609. https://doi.org/10.3390/rs2061589
APA StyleBecker-Reshef, I., Justice, C., Sullivan, M., Vermote, E., Tucker, C., Anyamba, A., Small, J., Pak, E., Masuoka, E., Schmaltz, J., Hansen, M., Pittman, K., Birkett, C., Williams, D., Reynolds, C., & Doorn, B. (2010). Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project. Remote Sensing, 2(6), 1589-1609. https://doi.org/10.3390/rs2061589