A Catalogue of Impact Craters and Surface Age Analysis in the Chang’e-6 Landing Area
"> Figure 1
<p>The base map of the CE-6 landing area generated from LROC NAC images with a pixel size of 3 m. The Lambert conformal conic projection was adopted.</p> "> Figure 2
<p>Comparison between the diameters automatically measured from extracted craters and diameters of the manually confirmed craters.</p> "> Figure 3
<p>Crater dating areas (i.e., A1, A2, and A3) of the basalt inside the Apollo basin. The basemap is the TiO<sub>2</sub> abundance [<a href="#B30-remotesensing-16-02014" class="html-bibr">30</a>] overlying the LROC Wide Angle Camera global mosaic [<a href="#B32-remotesensing-16-02014" class="html-bibr">32</a>]. The black polygon is the mare extent defined by [<a href="#B31-remotesensing-16-02014" class="html-bibr">31</a>]. The red, green, and magenta polygons are the crater counting areas of A1, A2, and A3. The black patches inside A2 and A3 are regions excluded for counting due to contamination of secondary craters.</p> "> Figure 4
<p>The (<b>a</b>) incremental and (<b>b</b>) cumulative size–frequency distributions of craters in the crater catalogue with the diameter internal of <math display="inline"><semantics> <mrow> <msqrt> <mn>2</mn> </msqrt> </mrow> </semantics></math>D in a log-log plot. Note that the diameter axis is the crater median in each bin. (<b>c</b>) The incremental size–frequency distribution established by robust kernel density estimation [<a href="#B33-remotesensing-16-02014" class="html-bibr">33</a>].</p> "> Figure 5
<p>The mapped craters annotated in red with diameters larger than 200 m in the CE-6 landing area overlaying on the LROC NAC DOM mosaic.</p> "> Figure 6
<p>Spatial densities of craters in the CE-6 landing area: (<b>a</b>) spatial density of the crater diameters within 30 m to 1 km excluding possible secondary craters and (<b>b</b>) spatial density of craters with D ≥ 1 km excluding possible secondary craters. The Lambert conformal conic projection is adopted. Note that the colors represent different density values in different plots.</p> "> Figure 7
<p>Crater depth (D > 480 m) distribution of CE-6 landing area in a log-log plot. There are 1547 craters catalogued with a depth interval of 50 m.</p> "> Figure 8
<p>The relationships between the crater diameter and (<b>a</b>) the crater depth (in a log-log plot) and (<b>b</b>) the d-D ratio. The results for mare craters are shown in red, while the results for highland are shown in black.</p> "> Figure 9
<p>AMAs of the crater dating areas: (<b>a</b>) A1; (b) A2; (<b>c</b>) A3; (<b>d</b>) A1 + A2. The standard lunar crater equilibrium line is from [<a href="#B37-remotesensing-16-02014" class="html-bibr">37</a>], the PF is from [<a href="#B38-remotesensing-16-02014" class="html-bibr">38</a>], and the CF is from [<a href="#B8-remotesensing-16-02014" class="html-bibr">8</a>].</p> "> Figure 10
<p>AMAs of the crater dating areas: (<b>a</b>) A1; (<b>b</b>) A2; (<b>c</b>) A3; (<b>d</b>) A1 + A2. The standard lunar crater equilibrium line is from [<a href="#B37-remotesensing-16-02014" class="html-bibr">37</a>], the PF is from [<a href="#B5-remotesensing-16-02014" class="html-bibr">5</a>], and the CF is from [<a href="#B5-remotesensing-16-02014" class="html-bibr">5</a>].</p> "> Figure A1
<p>Different depth-to-diameter ratios of craters at various degradation stages: (<b>a</b>) a fresh crater (location: 156.07°W, 41.59°S) with diameter of 1769.7 m and depth-to-diameter ratio of 0.177, (<b>b</b>) a degraded crater (location: 152.80°W, 40.58°S) with diameter of 453.2 m and depth-to-diameter ratio of 0.07, and (<b>c</b>) a heavily degraded crater (location: 158.02°W, 41.59°S) with diameter of 364 m and depth-to-diameter ratio of 0.023.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. LROC NAC Images and SLDEM2015
2.2. Crater Extraction and Mapping in CE-6 Landing Area
2.3. Surface Dating with Craters
3. Results
3.1. Catalogue of Craters in CE-6 Landing Area
3.2. Surface Model Ages of CE-6 Landing Area
4. Discussion
4.1. Comparison with the Craters in CE-5 Landing Area
4.2. Dating Results Compared with Previous Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model | Precision | Recall | mAP50 | mAP50-95 |
---|---|---|---|---|
YOLOv8 | 0.630 | 0.516 | 0.547 | 0.325 |
YOLOv8-LCNET | 0.858 | 0.828 | 0.906 | 0.675 |
Appendix B
References
- Smith, J.V.; Anderson, A.T.; Newton, R.C.; Olsen, E.J.; Crewe, A.V.; Isaacson, M.S. Petrologic history of the moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks. In Proceedings of the Apollo 11 Lunar Science Conference, Houston, TX, USA, 5–8 January 1970; p. 897. [Google Scholar]
- Wood, J.A.; Dickey, J.J.S.; Marvin, U.B.; Powell, B.N. Lunar anorthosites and a geophysical model of the moon. In Proceedings of the Apollo 11 Lunar Science Conference, Houston, TX, USA, 5–8 January 1970; p. 965. [Google Scholar]
- Stevenson, D.J. Origin of the Moon-The Collision Hypothesis. Annu. Rev. Earth Planet Sci. 1987, 15, 271–315. [Google Scholar] [CrossRef]
- Hu, S.; He, H.; Ji, J.; Lin, Y.; Hui, H.; Anand, M.; Tartèse, R.; Yan, Y.; Hao, J.; Li, R.; et al. A dry lunar mantle reservoir for young mare basalts of Chang’e-5. Nature 2021, 600, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Neukum, G. Meteoriten Bombardement und Datierung Planetarer Oberflächen (Meteorite Bombardment and Dating of Planetary Surfaces); Ludwig-Maximilians University: Munich, Germany, 1983. [Google Scholar]
- Ivanov, B.A. Mars/Moon Cratering Rate Ratio Estimates. Space Sci. Rev. 2001, 96, 87–104. [Google Scholar] [CrossRef]
- Yue, Z.; Di, K.; Michael, G.; Gou, S.; Lin, Y.; Liu, J. Martian surface dating model refinement based on Chang’E-5 updated lunar chronology function. Earth Planet Sci. Lett. 2022, 595, 117765. [Google Scholar] [CrossRef]
- Yue, Z.; Di, K.; Wan, W.; Liu, Z.; Gou, S.; Liu, B.; Peng, M.; Wang, Y.; Jia, M.; Liu, J.; et al. Updated lunar cratering chronology model with the radiometric age of Chang’e-5 samples. Nat. Astron. 2022, 6, 541–545. [Google Scholar] [CrossRef]
- Li, C.; Wang, C.; Wei, Y.; Lin, Y. China’s present and future lunar exploration program. Science 2019, 365, 238–239. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Liu, D.; Chen, Y.; Zhou, Q.; Ren, X.; Zhang, Z.; Yan, W.; Chen, W.; Wang, Q.; Deng, X.; et al. Landing site of the Chang’e-6 lunar farside sample return mission from the Apollo basin. Nat. Astron. 2023, 7, 1188–1197. [Google Scholar] [CrossRef]
- Yue, Z.; Di, K.; Liu, Z.; Michael, G.; Jia, M.; Xin, X.; Liu, B.; Peng, M.; Liu, J. Lunar regolith thickness deduced from concentric craters in the CE-5 landing area. Icarus 2019, 329, 46–54. [Google Scholar] [CrossRef]
- Jia, B.; Fa, W.; Zhang, M.; Di, K.; Xie, M.; Tai, Y.; Li, Y. On the provenance of the Chang’E-5 lunar samples. Earth Planet Sci. Lett. 2022, 596, 117791. [Google Scholar] [CrossRef]
- Robbins, S.J. A New Global Database of Lunar Impact Craters >1–2 km: 1. Crater Locations and Sizes, Comparisons With Published Databases, and Global Analysis. J. Geophys. Res. Planets 2019, 124, 871–892. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, B.; Xue, H.; Li, X.; Ma, J. An Improved Global Catalog of Lunar Impact Craters (≥1 km) With 3D Morphometric Information and Updates on Global Crater Analysis. J. Geophys. Res. Planets 2021, 126, e2020JE006728. [Google Scholar] [CrossRef]
- Jia, M.; Yue, Z.; Di, K.; Liu, B.; Liu, J.; Michael, G. A catalogue of impact craters larger than 200 m and surface age analysis in the Chang’e-5 landing area. Earth Planet Sci. Lett. 2020, 541, 116272. [Google Scholar] [CrossRef]
- Bo, Z.; Di, K.; Liu, Z.; Yue, Z.; Liu, J.; Shi, K. A catalogue of meter-scale impact craters in the Chang’e-5 landing area measured from centimeter-resolution descent imagery. Icarus 2022, 378, 114943. [Google Scholar] [CrossRef]
- Barker, M.K.; Mazarico, E.; Neumann, G.A.; Zuber, M.T.; Haruyama, J.; Smith, D.E. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2016, 273, 346–355. [Google Scholar] [CrossRef]
- Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; et al. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview. Space Sci. Rev. 2010, 150, 81–124. [Google Scholar] [CrossRef]
- Di, K.; Jia, M.; Xin, X.; Wang, J.; Liu, B.; Li, J.; Xie, J.; Liu, Z.; Peng, M.; Yue, Z.; et al. High-Resolution Large-Area Digital Orthophoto Map Generation Using LROC NAC Images. Photogramm. Eng. Remote Sensing 2019, 85, 481–491. [Google Scholar] [CrossRef]
- Juan, T.; Diana-Margarita, C.; Julio-Alejandro, R. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Robbins, S.J.; Antonenko, I.; Kirchoff, M.R.; Chapman, C.R.; Fassett, C.I.; Herrick, R.R.; Singer, K.; Zanetti, M.; Lehan, C.; Huang, D.; et al. The variability of crater identification among expert and community crater analysts. Icarus 2014, 234, 109–131. [Google Scholar] [CrossRef]
- Kneissl, T.; van Gasselt, S.; Neukum, G. Map-projection-independent crater size-frequency determination in GIS environments—New software tool for ArcGIS. Planet Space Sci. 2011, 59, 1243–1254. [Google Scholar] [CrossRef]
- Liu, Z.; Yue, Z.; Michael, G.; Gou, S.; Di, K.; Sun, S.; Liu, J. A global database and statistical analyses of (4) Vesta craters. Icarus 2018, 311, 242–257. [Google Scholar] [CrossRef]
- Gou, S.; Yue, Z.; Di, K.; Liu, Z. A global catalogue of Ceres impact craters ≥ 1 km and preliminary analysis. Icarus 2018, 302, 296–307. [Google Scholar] [CrossRef]
- Stöffler, D.; Ryder, G. Stratigraphy and Isotope Ages of Lunar Geologic Units: Chronological Standard for the Inner Solar System. Space Sci. Rev. 2001, 96, 9–54. [Google Scholar] [CrossRef]
- Stöffler, D.; Ryder, G.; Ivanov, B.A.; Artemieva, N.A.; Cintala, M.J.; Grieve, R.A.F. Cratering History and Lunar Chronology. Rev. Mineral Geochem. 2006, 60, 519–596. [Google Scholar] [CrossRef]
- Hiesinger, H.; Jaumann, R.; Neukum, G.; Head III, J.W. Ages of mare basalts on the lunar nearside. J. Geophys. Res. Planets 2000, 105, 29239–29275. [Google Scholar] [CrossRef]
- Michael, G.; Neukum, G. Planetary surface dating from crater size–frequency distribution measurements: Partial resurfacing events and statistical age uncertainty. Earth Planet Sci. Lett. 2010, 294, 223–229. [Google Scholar] [CrossRef]
- Giguere, T.A.; Taylor, G.J.; Hawke, B.R.; Lucey, P.G. The titanium contents of lunar mare basalts. Meteorit. Planet. Sci. 2000, 35, 193–200. [Google Scholar] [CrossRef]
- Sato, H.; Robinson, M.S.; Lawrence, S.J.; Denevi, B.W.; Hapke, B.; Jolliff, B.L.; Hiesinger, H. Lunar mare TiO2 abundances estimated from UV/Vis reflectance. Icarus 2017, 296, 216–238. [Google Scholar] [CrossRef]
- Nelson, D.; Koeber, S.; Daud, K.; Robinson, M.; Watters, T.; Banks, M.; Williams, N. Mapping Lunar Maria Extents and Lobate Scarps Using LROC Image Products. In Proceedings of the 45th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 17–21 March 2014; p. 2861. [Google Scholar]
- Wagner, R.V.; Speyerer, E.J.; Robinson, M.S.; The LROC Team. New Mosaicked Data Products from the LROC Team. In Proceedings of the 46th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2015; p. 1473. [Google Scholar]
- Robbins, S.J.; Riggs, J.D.; Weaver, B.P.; Bierhaus, E.B.; Chapman, C.R.; Kirchoff, M.R.; Singer, K.N.; Gaddis, L.R. Revised recommended methods for analyzing crater size-frequency distributions. Meteorit. Planet. Sci. 2018, 53, 891–931. [Google Scholar] [CrossRef]
- Salamunićcar, G.; Lončarić, S.; Mazarico, E. LU60645GT and MA132843GT catalogues of Lunar and Martian impact craters developed using a Crater Shape-based interpolation crater detection algorithm for topography data. Planet Space Sci. 2012, 60, 236–247. [Google Scholar] [CrossRef]
- Robbins, S.J.; Hynek, B.M. A new global database of Mars impact craters ≥1 km: 2. Global crater properties and regional variations of the simple-to-complex transition diameter. J. Geophys. Res. Planets 2012, 117, E06001. [Google Scholar] [CrossRef]
- Shi, K.; Yue, Z.; Di, K.; Liu, J.; Dong, Z. The gardening process of lunar regolith by small impact craters: A case study in Chang’E-4 landing area. Icarus 2022, 377, 114908. [Google Scholar] [CrossRef]
- Trask, N.J. Size and spatial distribution of craters estimated from the ranger photographs. In Ranger VIII and IX, Part II—Experimenters’ Analyses and Interpretations; 32-800; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 1966; pp. 252–263. [Google Scholar]
- Neukum, G.; Ivanov, B.A.; Hartmann, W.K. Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 2001, 96, 55–86. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Y.; Werner, S.C.; Prieur, N.C.; Xiao, Z. A global analysis of crater depth/diameter ratios on the Moon. Geophys. Res. Lett. 2022, 49, e2022GL100886. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Nan, J.; Zhao, C.; Xie, B.; Gou, S.; Yue, Z.; Di, K.; Zhang, H.; Deng, X.; Sun, S. A Catalogue of Impact Craters and Surface Age Analysis in the Chang’e-6 Landing Area. Remote Sens. 2024, 16, 2014. https://doi.org/10.3390/rs16112014
Wang Y, Nan J, Zhao C, Xie B, Gou S, Yue Z, Di K, Zhang H, Deng X, Sun S. A Catalogue of Impact Craters and Surface Age Analysis in the Chang’e-6 Landing Area. Remote Sensing. 2024; 16(11):2014. https://doi.org/10.3390/rs16112014
Chicago/Turabian StyleWang, Yexin, Jing Nan, Chenxu Zhao, Bin Xie, Sheng Gou, Zongyu Yue, Kaichang Di, Hong Zhang, Xiangjin Deng, and Shujuan Sun. 2024. "A Catalogue of Impact Craters and Surface Age Analysis in the Chang’e-6 Landing Area" Remote Sensing 16, no. 11: 2014. https://doi.org/10.3390/rs16112014
APA StyleWang, Y., Nan, J., Zhao, C., Xie, B., Gou, S., Yue, Z., Di, K., Zhang, H., Deng, X., & Sun, S. (2024). A Catalogue of Impact Craters and Surface Age Analysis in the Chang’e-6 Landing Area. Remote Sensing, 16(11), 2014. https://doi.org/10.3390/rs16112014