Assessment of Sea-Ice Classification Capabilities during Melting Period Using Airborne Multi-Frequency PolSAR Data
"> Figure 1
<p>Map of study area in the vicinity of Bayuquan in Liaodong Bay. The coverage of PolSAR data is represented with red and yellow rectangles, and the coverage of Sentinel-2 images is delineated by the blue rectangle, and the black rectangle in the Bohai inset map shows the geographical location of the study area.</p> "> Figure 2
<p>(<b>a</b>) Sentinel-2 true-color image (R = band 4, G = band 3, B = band 2, specific band information is available in <a href="#remotesensing-16-01100-t002" class="html-table">Table 2</a>). The red rectangles in the image indicate the coverage area of the PolSAR data in Scene 1 and Scene 2. For each waveband, the partially overlapping regions in (<b>b</b>) Scene 1 and (<b>c</b>) Scene 2 are represented in Pauli RGB images.</p> "> Figure 3
<p>(<b>a</b>) Sample examples of different sea-ice types in Sentinel-2 imagery, (<b>b</b>) L-band, (<b>c</b>) S-band, (<b>d</b>) C-band images in Scene 1; (<b>e</b>) expert interpretation map.</p> "> Figure 4
<p>Flowchart of sea-ice classification during melting period with multi-frequency PolSAR data.</p> "> Figure 5
<p>The Euclidean distance of L-band polarimetric features in different type combinations, the columns in the figure represent combinations of sea-ice types, with each row corresponding to a different polarimetric features and a different color indicating its divisibility.</p> "> Figure 6
<p>The top three polarimetric feature images with the highest classification capability in the L-band.</p> "> Figure 7
<p>The Euclidean distance of S-band polarimetric features in different type combinations, the columns in the figure represent combinations of sea-ice types, with each row corresponding to a different polarimetric features and a different color indicating its divisibility.</p> "> Figure 8
<p>The top three polarimetric feature images with the highest classification capability in the S-band.</p> "> Figure 9
<p>The Euclidean distance of C-band polarimetric features in different type combinations, the columns in the figure represent combinations of sea-ice types, with each row corresponding to a different polarimetric features and a different color indicating its divisibility.</p> "> Figure 10
<p>The top three polarimetric feature images with the highest classification capability in the C-band.</p> "> Figure 11
<p>The partial classification result images for Scene 1. Each row represents a different band, and each column represents the corresponding number of polarization features.</p> "> Figure 12
<p>(<b>a</b>) Single-band sea-ice production accuracy trend plot for L-band in Scene 1, (<b>b</b>) S-band, (<b>c</b>) C-band, (<b>d</b>) Overall single-band sea-ice classification accuracy plot.</p> "> Figure 12 Cont.
<p>(<b>a</b>) Single-band sea-ice production accuracy trend plot for L-band in Scene 1, (<b>b</b>) S-band, (<b>c</b>) C-band, (<b>d</b>) Overall single-band sea-ice classification accuracy plot.</p> "> Figure 13
<p>The overall accuracy trends for different classifiers in Scene 1.</p> "> Figure 14
<p>(<b>a</b>) Single-band sea-ice production accuracy trend plot for L-band in Scene 5, (<b>b</b>) S-band, (<b>c</b>) C-band, (<b>d</b>) Overall single-band sea-ice classification accuracy plot.</p> "> Figure 15
<p>The overall accuracy trends for different classifiers in Scene 5.</p> "> Figure 16
<p>Validation data and classification results; each row represents a different scene, and each column represents a different classifier.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Multi-Dimensional PolSAR Data
2.3. Sentinel-2 Data
2.4. Visual Interpretation of Sea-Ice Types
3. Methodology
3.1. PolSAR Data Preprocessing and Polarimetric Feature Extraction
3.2. Separability Index
3.3. Classifier
- (1)
- ML: It is a statistical estimation-based classification method used to estimate the parameters of a probability model and make classification decisions based on likelihood. In this study, the likelihood threshold is chosen as a single value, and the data proportion coefficient is set to 1.
- (2)
- SVM: It transforms the original features into a high-dimensional feature space to find the optimal separating hyperplane. In this study, the radial basis function is used as the kernel function for SVM.
- (3)
- RF: It generates a large number of decision trees and randomly selects training samples and features for each tree. Classification is determined by the outputs of all individual classification trees, making it robust to noise. In this study, 100 classification trees are planted, and the square root method is used to determine the number of features.
- (4)
- BPNN: It is a highly flexible model capable of adapting to various types of data and complex relationships. In this study, the activation function is chosen as logistic, the training contribution threshold is set to 0.9, the weight adjustment speed is 0.2, the number of hidden layers is 1, the number of iterations is 1000, and the RMS error is set to 0.1.
4. Feature Analysis
4.1. Single-Frequency Polarimetric Feature Analysis
4.1.1. L-Band
4.1.2. S-Band
4.1.3. C-Band
4.2. Analysis and Comparison of Multi-Frequency Features
- (1)
- Total power parameters (λ, SE, SEI, SEP, Span);
- (2)
- Volume scattering parameters (PV-Freeman, PV-Yamaguchi);
- (3)
- Scattering mechanism parameters (λ1, λ2, λ3, P1, H, , α1, C22).
5. Sea-Ice Classification
5.1. Single-Frequency Sea-Ice Classification
5.1.1. Single-Frequency Classifier Selection
5.1.2. Single-Frequency Classification Results
5.2. Multi-Frequency Sea-Ice Classification
5.2.1. Multi-Frequency Classifier Selection
5.2.2. Multi-Frequency Classification Results
6. Validation and Comparison
6.1. Generalized Performance Verification
6.2. Comparison of Other Methods
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mark, C.; Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Su, H.; Wang, Y.; Xiao, J.; Li, L. Improving MODIS sea ice detectability using gray level co-occurrence matrix texture analysis method: A case study in the Bohai Sea. ISPRS J. Photogramm. Remote Sens. 2013, 85, 13–20. [Google Scholar] [CrossRef]
- Gelis, I.D.; Colin, A.; Longepe, N. Prediction of Categorized Sea Ice Concentration from Sentinel-1 SAR Images Based on a Fully Convolutional Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 99, 5831–5841. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. Detection of Ice and Mixed Ice–Water Pixels for MODIS Ocean Color Data Processing. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2510–2518. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kim, D.-J.; Hwang, B.J. Characterization of Arctic Sea Ice Thickness Using High-Resolution Spaceborne Polarimetric SAR Data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 13–22. [Google Scholar] [CrossRef]
- Macdonald, R.W.; Harner, T.; Fyfe, J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci. Total Environ. 2005, 342, 5–86. [Google Scholar] [CrossRef]
- Casey, J.; Howell, S.E.; Tivy, A.; Haas, C. Separability of sea ice types from wide swath C- and L-band synthetic aperture radar imagery acquired during the melt season. Remote Sens. Environ. Interdiscip. J. 2016, 174, 314–328. [Google Scholar] [CrossRef]
- Cavalieri, D.J. A microwave technique for mapping thin sea ice. J. Geophys. Res. Ocean. 1994, 99, 12561–12572. [Google Scholar] [CrossRef]
- Dierking, W.; Skriver, H.; Gudmandsen, P. On the improvement of sea ice classification by means of radar polarimetry. In Remote Sensing in Transition; Alfred Wegener Institute for Polar and Marine Research: Bremerhaven, Germany, 2004. [Google Scholar]
- Shang, F.; Hirose, A. Quaternion Neural-Network-Based PolSAR Land Classification in Poincare-Sphere-Parameter Space. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5693–5703. [Google Scholar] [CrossRef]
- Espeseth, M.; Brekke, C.; Johansson, A. Assessment of RISAT-1 and Radarsat-2 for Sea Ice Observations from a Hybrid-Polarity Perspective. Remote Sens. 2017, 9, 1088. [Google Scholar] [CrossRef]
- De Abreu, R.; Flett, D.; Scheuchl, B.; Ramsay, B. Operational sea ice monitoring with RADARSAT-2—A glimpse into the future. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 2, pp. 1308–1310. [Google Scholar] [CrossRef]
- Kwon, T.J.; Li, J.; Wong, A. ETVOS: An Enhanced Total Variation Optimization Segmentation Approach for SAR Sea-Ice Image Segmentation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 925–934. [Google Scholar] [CrossRef]
- Zakhvatkina, N.Y.; Alexandrov, V.Y.; Johannessen, O.M.; Sandven, S.; Frolov, I.Y. Classification of Sea Ice Types in ENVISAT Synthetic Aperture Radar Images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2587–2600. [Google Scholar] [CrossRef]
- Wang, T.; Yang, X.; Wang, Y.; Fang, J.; Jia, L. A multi-level SAR sea ice image classification method by incorporating egg-code-based expert knowledge. In Proceedings of the 2012 5th International Congress on Image and Signal Processing (CISP), Chongqing, China, 16–18 October 2012. [Google Scholar] [CrossRef]
- Liu, M.; Dai, Y.; Zhang, J.; Ren, G.; Meng, J.; Zhang, X. Research on Sea Ice Secondary Classification Method Using High-Resolution Fully Polarimetric Synthetic Aperture Radar Data. Acta Oceanol. Sin. 2013, 4, 80–87. (In Chinese) [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy-based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Zhang, X. Polarimetric SAR Study on Bohai Sea Ice Thickness. Ph.D. Dissertation, Ocean University of China, Qingdao, China, 2011. (In Chinese). [Google Scholar]
- Scheuchl, B.; Hajnsek, I.; Cumming, I.G. Model-based classification of polarimetric SAR sea ice data. In Proceedings of the IGARSS’02, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar] [CrossRef]
- Dabboor, M.; Geldsetzer, T.; Babelli, A. Towards sea ice classification using simulated RADARSAT Constellation Mission compact polarimetric SAR imagery. Remote Sens. Environ. 2014, 140, 189–195. [Google Scholar] [CrossRef]
- Zhang, X.; Dierking, W.; Zhang, J.; Meng, J. A Polarimetric Decomposition Method for Ice in the Bohai Sea Using C-Band PolSAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 47–66. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, W.; Hu, Y.; Chu, Q.; Liu, L. An Improved Sea Ice Classification Algorithm with Gaofen-3 Dual-Polarization SAR Data Based on Deep Convolutional Neural Networks. Remote Sens. 2022, 14, 906. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.; Shokr, M.; Mi, C.; Li, X.-M.; Cheng, X.; Hui, F. Deep Learning Based Sea Ice Classification with Gaofen-3 Fully Polarimetric SAR Data. Remote Sens. 2021, 13, 1452. [Google Scholar] [CrossRef]
- Rignot, E.; Drinkwater, M.R. Winter sea ice mapping from multi-parameter synthetic aperture radar data. J. Glaciol. 1994, 40, 31–45. [Google Scholar] [CrossRef]
- Xie, Q.; Lang, W.; Zhang, X.; Yang, X. On the improvement of sea ice classification by fusing C- and L-band SAR-C polarimetric quantities. In Proceedings of the International Conference on Intelligent Control & Information Processing, Beijing, China, 9–11 June 2013; Volume 12, pp. 103–107. [Google Scholar] [CrossRef]
- Eltoft, T.; Doulgeris, A.P.; Grahn, J. Model-based polarimetric decomposition of Arctic sea ice. In Proceedings of the EUSAR 2014, 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014. [Google Scholar]
- Li, D.; Wang, G.; Qin, C.; Wu, B. River Extraction under Bankfull Discharge Conditions Based on Sentinel-2 Imagery and DEM Data. Remote Sens. 2021, 13, 2650. [Google Scholar] [CrossRef]
- GB/T 14914.2-2019; China National Standardization Management Committee. Specifications for Marine Observations. China Standards Publishing House: Beijing, China, 2019.
- Tavri, A.; Scharien, R.; Geldsetzer, T. Melt Season Arctic Sea Ice Type Separability Using Fully and Compact Polarimetric C- and L-Band Synthetic Aperture Radar. Can. J. Remote Sens. 2023, 49, 2271578. [Google Scholar] [CrossRef]
- Yu, H.; Wang, C.; Li, J.; Sui, Y. Automatic Extraction of Green Tide From GF-3 SAR Images Based on Feature Selection and Deep Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10598–10613. [Google Scholar] [CrossRef]
- Du, Y. Image Retrieval with Minimum Euclidean Distance and Relevant Feedback Based on Bayesian Classifier, and DSP Implementation. Master’s Dissertation, Jilin University, Changchun, China, 2006. (In Chinese). [Google Scholar]
- Leigh, S.; Wang, Z.; Clausi, D. Automated ice–water classification using dual-polarization SAR satellite imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5529–5539. [Google Scholar] [CrossRef]
- Liu, H.; Guo, H.; Zhang, L. SVM-Based sea ice classification using textural features and concentration from RADARSAT-2 Dual-Pol ScanSAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1601–1613. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Shamshiri, R.; Eide, E.; Hyland, K.V. Spatio-temporal distribution of sea-ice thickness using a machine learning approach with Google Earth Engine and Sentinel-1 GRD data. Remote Sens. Environ. 2022, 270, 112851. [Google Scholar] [CrossRef]
- Pearson, D.; Livingstone, C.E.; Hawkins, R.K.; Gray, A.L.; Arsenault, L.D.; Wilkenson, T.L.; Okamoto, K. Radar detection of sea-ice ridges and icebergs in frozen oceans at incidence angles from 0 to 90. In Proceedings of the 6th Canadian Symposium on Remote Sensing, Halifax, NS, Canada, 21–23 May 1980. [Google Scholar]
- Rott, H.; Domik, G.; Maetzler, C.; Miller, H. Study on Use and Characteristics of SAR for Land Snow and Ice Applications; Institut fur Meteorologie und Geophysik, Universität Innsbruck: Innsbruck, Austria, 1985. [Google Scholar]
- Lee, J.S.; Grunes, M.; Kwok, R. Classification of multi-look polarimetric SAR imagery based on complex wishart distribution. Int. J. Remote Sens. 1992, 15, 2299–2311. [Google Scholar] [CrossRef]
- Matsuoka, T.; Uratsuka, S.; Satake, M.; Kobayashi, T.; Nadai, A.; Umehara, T.; Maeno, H.; Wakabayashi, H.; Nakamura, K.; Nishio, F. CRL/NASDA airborne SAR (Pi-SAR) observations of sea ice in the sea of okhotsk. Ann. Glaciol. 2001, 33, 115–119. [Google Scholar] [CrossRef]
- Dierking, W.; Busche, T. Sea ice monitoring by L-band SAR: An assessment based on literature and comparisons of JERS-1 and ERS-1 imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 957–970. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, S.; Li, X.; Li, Y. Sea ice classification in full polarimetric SAR using target decomposition features. Acta Geod. Cartogr. Sin. 2018, 47, 1609–1620. (In Chinese) [Google Scholar]
- Sanden, J.J.V.D.; Drouin, H. Satellite SAR Observations of River Ice Cover: A RADARSAT-2 (C-band) and ALOS PALSAR (L-band) Comparison. In Proceedings of the 16th Workshop on River Ice, Winnipeg, MB, Canada, 18–22 September 2011. [Google Scholar]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Shen, X.; Zhang, J.; Zhang, X.; Meng, J.; Ke, C. Sea Ice Classification Using Cryosat-2 Altimeter Data by Optimal Classifier-Feature Assembly. IEEE Geosci. Remote Sens. Lett. 2017, 11, 1–5. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, B.; Perrie, W. Arctic Sea Ice and Open Water Classification from Spaceborne Fully Polarimetric Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–13. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Liu, M.; Meng, J. Assessment of C-band compact polarimetry SAR for sea ice classification. Acta Oceanol. Sin. 2016, 35, 79–88. [Google Scholar] [CrossRef]
Band | Resolution (m) | Polarization Mode | Scene | Incidence Angle (°) | Acquisition Start Time UTC |
---|---|---|---|---|---|
L | 1.0 | HH/HV/VH/VV | Scene 1 | 31.89 | 2022-02-27 06:22:54 |
Scene 2 | 31.89 | 2022-02-27 06:23:23 | |||
Scene 3 | 31.86 | 2022-02-28 03:13:55 | |||
Scene 4 | 31.86 | 2022-02-28 03:17:25 | |||
Scene 5 | 31.86 | 2022-02-28 03:27:30 | |||
S | 1.0 | HH/HV/VH/VV | Scene 1 | 33.51 | 2022-02-27 06:22:54 |
Scene 2 | 33.51 | 2022-02-27 06:23:23 | |||
Scene 3 | 33.48 | 2022-02-28 03:13:55 | |||
Scene 4 | 33.48 | 2022-02-28 03:17:25 | |||
Scene 5 | 33.48 | 2022-02-28 03:27:30 | |||
C | 0.5 | HH/HV/VH/VV | Scene 1 | 33.51 | 2022-02-27 06:22:54 |
Scene 2 | 33.51 | 2022-02-27 06:23:23 | |||
Scene 3 | 33.48 | 2022-02-28 03:13:55 | |||
Scene 4 | 33.48 | 2022-02-28 03:17:25 | |||
Scene 5 | 33.48 | 2022-02-28 03:27:30 |
Band | Central Wavelength (nm) | Bandwidth (nm) | Resolution (m) |
---|---|---|---|
Band 1—Coastal aerosol | 442.2 | 20 | 60 |
Band 2—Blue | 492.1 | 65 | 10 |
Band 3—Green | 559.0 | 35 | 10 |
Band 4—Red | 664.9 | 30 | 10 |
Band 5—Vegetation red edge | 703.8 | 15 | 20 |
Band 6—Vegetation red edge | 739.1 | 15 | 20 |
Band 7—Vegetation red edge | 779.7 | 20 | 20 |
Band 8—NIR | 832.9 | 115 | 10 |
Band 8A—Narrow NIR | 864.0 | 20 | 20 |
Band 9—Water vapor | 943.2 | 20 | 60 |
Band 10-SWIR—Cirrus | 1376.9 | 30 | 60 |
Band 11—SWIR | 1610.4 | 90 | 20 |
Band 12—SWIR | 2185.7 | 180 | 20 |
Ice Class | Abbreviation | Morphological Feature Description |
---|---|---|
Open water | OW | The surface is smooth and the color is darker. |
Gray ice | Gi | First-year floating ice, characterized by a flat surface, often appears gray. |
Melting Gray ice | GiW | First-year floating ice with a wet, flat surface appears darker and is relatively thin. |
Gray-white Ice | Gw | Deformed first-year floating ice has a rougher texture and appears gray–white. |
Melting Gray-white Ice | GwW | Rough, gray–white first-year floating ice has a surface with a coarse texture. |
Polarization Decomposition Method | Symbol | Name |
---|---|---|
H/A/ decomposition | λ1, λ2, λ3 | Eigenvalue |
P1, P2, P3 | Eigenvalue probability | |
H | Entropy | |
A | Anisotropy | |
A12 | Anisotropy12 | |
A (Lueneburg) | Lueneburg anisotropy | |
SERD | Single-bounce eigenvalues relative difference | |
DERD | Double-bounce eigenvalues relative difference | |
SE | Shannon entropy | |
SEP | Polarimetric component of Shannon entropy | |
SEI | Intensity component of Shannon entropy | |
PF | Polarization fraction | |
PA | Shannon entropy | |
RVI | Radar vegetation index | |
PH | Pedestal height | |
λ | Average Target Power | |
Alpha approximation | ||
α1, α2, α3 | Internal parameters of the Eigenvector | |
β, β1, β2, β3 | Target orientation Angle | |
δ, δ1, δ2, δ3 | Scattering diversity | |
γ, γ1, γ2, γ3 | Polarization characteristic parameter | |
CCC | Consistency correlation coefficient | |
Freeman–Durden decomposition | PS-Freeman | Surface scattering (corresponding power) |
PD-Freeman | Double Bounce Scattering (corresponding power) | |
PV-Freeman | Volume Scattering (corresponding power) | |
Yamaguchi four-component decomposition | PS-Yamaguchi | Surface scattering (corresponding power) |
PD-Yamaguchi | Double-Bounce Scattering (corresponding power) | |
PV-Yamaguchi | Volume Scattering (corresponding power) | |
PH-Yamaguchi | Helix Scattering (corresponding power) | |
Other parameters | Span | Total power of scattering matrix |
C11, C22, C33 | Components of the covariance matrix | |
ρ12, ρ13, ρ23 | Correlation coefficient |
Band | Polarimetric Feature | Total |
---|---|---|
L-band | SE, SEI, Span, , λ2, H, λ3, SEP, α1, λ1, PV-Freeman, p1 | 12 |
S-band | SEI, SE, Span, PV-Freeman, λ1, λ2, λ, PV-Yamaguchi, λ3 | 9 |
C-band | SE, SEI, Span, λ3, PV-Freeman, , λ2, PV-Yamaguchi, λ1, λ, α1, C22 | 12 |
Classifier | Band | Overall Accuracy | Kappa Coefficient |
---|---|---|---|
SVM | L | 73.04% | 0.5747 |
S | 76.70% | 0.6221 | |
C | 85.64% | 0.7674 | |
ML | L | 66.37% | 0.4828 |
S | 72.47% | 0.6078 | |
C | 81.81% | 0.7146 | |
RF | L | 69.91% | 0.5416 |
S | 75.49% | 0.6149 | |
C | 85.58% | 0.7628 | |
BPNN | L | 69.70% | 0.5274 |
S | 75.37% | 0.6211 | |
C | 85.49% | 0.7619 |
Class | OW | Gi | GiW | Gw | GwW | Total |
---|---|---|---|---|---|---|
OW | 81.54 | 20.24 | 33.52 | 0.00 | 0.19 | 55.10 |
Gi | 10.84 | 64.93 | 15.70 | 0.36 | 10.96 | 17.38 |
GiW | 7.39 | 5.82 | 50.11 | 0.33 | 0.38 | 11.99 |
Gw | 0.16 | 3.26 | 0.21 | 68.85 | 22.97 | 7.94 |
GwW | 0.07 | 5.75 | 0.46 | 30.45 | 65.50 | 7.59 |
Total | 100 | 100 | 100 | 100 | 100 | 73.04 |
Class | OW | Gi | GiW | Gw | GwW | Total |
---|---|---|---|---|---|---|
OW | 91.29 | 11.10 | 8.40 | 1.74 | 0.29 | 56.41 |
Gi | 1.33 | 62.98 | 12.77 | 27.82 | 1.95 | 12.95 |
GiW | 7.36 | 22.36 | 65.36 | 29.31 | 23.04 | 20.07 |
Gw | 0.01 | 3.51 | 8.79 | 31.19 | 19.73 | 5.59 |
GwW | 0.01 | 0.06 | 4.68 | 9.93 | 54.99 | 4.97 |
Total | 100 | 100 | 100 | 100 | 100 | 76.70 |
Class | OW | Gi | GiW | Gw | GwW | Total |
---|---|---|---|---|---|---|
OW | 99.54 | 0.16 | 0.31 | 0.02 | 0.02 | 58.62 |
Gi | 0.03 | 69.17 | 17.96 | 26.08 | 5.01 | 13.72 |
GiW | 0.19 | 12.35 | 63.29 | 0.96 | 6.57 | 10.82 |
Gw | 0.01 | 14.07 | 3.04 | 67.10 | 25.76 | 9.61 |
GwW | 0.24 | 4.25 | 15.40 | 5.84 | 62.64 | 7.23 |
Total | 100 | 100 | 100 | 100 | 100 | 85.64 |
Band | Polarimetric Feature | Total |
---|---|---|
L-band | SE, SEI, Span, , λ2, H, λ3, SEP, α1 | 9 |
S-band | SEI, SE, Span, PV-FREEMAN, λ1, λ2 | 6 |
C-band | SE, SEI, Span, λ3, PV-FREEMAN, | 6 |
Classifier | Polarimetric Features | Total |
---|---|---|
SVM | C-SE, C-SEI, L-SE, C-span, S-SEI, S-SE, S-span, L-SEI, S-PV-Freeman, L-span, S-λ1, S-λ2 | 12 |
ML | C-SE, C-SEI, L-SE, C-span, S-SEI, S-SE, S-span, L-SEI, S-PV-Freeman, L-span, S-λ1, S-λ2, C-λ3, L- | 14 |
RF | C-SE, C-SEI, L-SE, C-span, S-SEI, S-SE, S-span, L-SEI, S-PV-Freeman, L-span, S-λ1, S-λ2, C-λ3, L-, C-PV-Freeman | 15 |
BPNN | C-SE, C-SEI, L-SE, C-span, S-SEI, S-SE, S-span, L-SEI, S-PV-Freeman, L-span, S-λ1, S-λ2, C-λ3, L-, C-PV-Freeman, C-, C-λ2, S-PV-Yamaguchi, L-λ3 | 19 |
Band | Polarization Mode | Scene | Overall Accuracy |
---|---|---|---|
L | HH + HV | Scene 1 | 58.57% |
HH + HV | Scene 5 | 63.68% | |
C | HH + HV | Scene 1 | 64.52% |
HH + HV | Scene 5 | 55.23% | |
HH + HV + VH + VV | Scene 1 | 79.31% | |
HH + HV + VH + VV | Scene 5 | 68.89% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Zhang, X.; Shi, L.; Liu, M.; Liu, G.; Cao, C.; Wang, R. Assessment of Sea-Ice Classification Capabilities during Melting Period Using Airborne Multi-Frequency PolSAR Data. Remote Sens. 2024, 16, 1100. https://doi.org/10.3390/rs16061100
Wang P, Zhang X, Shi L, Liu M, Liu G, Cao C, Wang R. Assessment of Sea-Ice Classification Capabilities during Melting Period Using Airborne Multi-Frequency PolSAR Data. Remote Sensing. 2024; 16(6):1100. https://doi.org/10.3390/rs16061100
Chicago/Turabian StyleWang, Peng, Xi Zhang, Lijian Shi, Meijie Liu, Genwang Liu, Chenghui Cao, and Ruifu Wang. 2024. "Assessment of Sea-Ice Classification Capabilities during Melting Period Using Airborne Multi-Frequency PolSAR Data" Remote Sensing 16, no. 6: 1100. https://doi.org/10.3390/rs16061100
APA StyleWang, P., Zhang, X., Shi, L., Liu, M., Liu, G., Cao, C., & Wang, R. (2024). Assessment of Sea-Ice Classification Capabilities during Melting Period Using Airborne Multi-Frequency PolSAR Data. Remote Sensing, 16(6), 1100. https://doi.org/10.3390/rs16061100