An Examination of the SMAP Operational Soil Moisture Products Accuracy at the Tibetan Plateau
"> Figure 1
<p>Naqu network location in CTP-SMTMN, the station geographical distribution. Figure adapted from [<a href="#B41-remotesensing-14-06255" class="html-bibr">41</a>].</p> "> Figure 2
<p>Temporal evaluation of station-averaged soil moisture (purple) and SPL3SMP_36km soil moisture (green): (<b>a</b>) Grid_2139, (<b>b</b>) Grid_2140, (<b>c</b>) Grid_2141, and (<b>d</b>) Grid_2142. The grey vertical lines represent precipitation.</p> "> Figure 2 Cont.
<p>Temporal evaluation of station-averaged soil moisture (purple) and SPL3SMP_36km soil moisture (green): (<b>a</b>) Grid_2139, (<b>b</b>) Grid_2140, (<b>c</b>) Grid_2141, and (<b>d</b>) Grid_2142. The grey vertical lines represent precipitation.</p> "> Figure 3
<p>Scatterplots of stations-averaged soil moisture and SPL3SMP_36km soil moisture: (<b>a</b>) Grid_2139, (<b>b</b>) Grid_2140, (<b>c</b>) Grid_2141, and (<b>d</b>) Grid_2142. The green dashed lines represent the 95% confidence level.</p> "> Figure 4
<p>Temporal evaluation of station-averaged surface temperature (purple) and SPL3SMP_36km surface temperature (green): (<b>a</b>) Grid_2139, (<b>b</b>) Grid_2140, (<b>c</b>) Grid_2141, and (<b>d</b>) Grid_2142.</p> "> Figure 4 Cont.
<p>Temporal evaluation of station-averaged surface temperature (purple) and SPL3SMP_36km surface temperature (green): (<b>a</b>) Grid_2139, (<b>b</b>) Grid_2140, (<b>c</b>) Grid_2141, and (<b>d</b>) Grid_2142.</p> "> Figure 5
<p>Temporal evaluation of station-averaged SSM (purple) and SPL3SMP_9km SSM (green): (<b>a</b>) Grid_34104, (<b>b</b>) Grid_34105, (<b>c</b>) Grid_34106, and (<b>d</b>) Grid_34107. The grey vertical lines represent precipitation.</p> "> Figure 5 Cont.
<p>Temporal evaluation of station-averaged SSM (purple) and SPL3SMP_9km SSM (green): (<b>a</b>) Grid_34104, (<b>b</b>) Grid_34105, (<b>c</b>) Grid_34106, and (<b>d</b>) Grid_34107. The grey vertical lines represent precipitation.</p> "> Figure 6
<p>Scatterplots of station-averaged SSM and SPL3SMP_E_9kmSSM: (<b>a</b>) Grid_34104, (<b>b</b>) Grid_34105, (<b>c</b>) Grid_34106, and (<b>d</b>) Grid_34107. Green dashed lines represent a confidence level of 95%.</p> ">
Abstract
:1. Introduction
2. Experimental Set-Up
2.1. Validation Sites
2.2. Satellite Data
2.2.1. SMAP SSM Product (SPL3SMP)
2.2.2. SMAP-Enhanced Level-3 SSM Product
3. Methods
3.1. Data Pre-Processing
3.2. Statistical Assessment
4. Results
4.1. SMAP Level-3 Radiometer SSM Product (SPL3SM_36km)
Grid | Stations | Longitude | Latitude | Bias | RMSE | ubRMSE | MAE | RP | RS | ErrMin | ErrMax | Sat.Obser |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2139 | 7 | 91.6805 | 31.9559 | −0.021 | 0.075 | 0.072 | 0.062 | 0.86 | 0.88 | −0.156 | 0.166 | 259 |
2140 | 20 | 91.6805 | 31.62478 | −0.020 | 0.065 | 0.062 | 0.055 | 0.89 | 0.90 | −0.146 | 0.180 | 218 |
2230 | 3 | 92.42738 | 31.62478 | −0.064 | 0.083 | 0.053 | 0.072 | 0.91 | 0.93 | −0.205 | 0.066 | 166 |
2141 | 4 | 91.6805 | 31.29487 | 0.047 | 0.069 | 0.051 | 0.055 | 0.90 | 0.91 | −0.076 | 0.226 | 231 |
2142 | 3 | 91.6805 | 30.96609 | 0.024 | 0.036 | 0.028 | 0.029 | 0.93 | 0.93 | −0.068 | 0.106 | 238 |
2232 | 3 | 92.42738 | 30.96609 | −0.106 | 0.113 | 0.041 | 0.106 | 0.90 | 0.90 | −0.180 | 0.009 | 168 |
Index Point | Stations | Line | Column | Longitude | Latitude | Bias | RMSE | ubRMSE | RP |
---|---|---|---|---|---|---|---|---|---|
2139 | 7 | 24 | 48 | 91.6805 | 31.95584 | 1.9 | 3.4 | 2.8 | 93 |
2140 | 20 | 25 | 48 | 91.6805 | 31.62478 | 2.7 | 4.1 | 3.1 | 92 |
2230 | 3 | 25 | 50 | 92.42738 | 31.62478 | 1.7 | 3.8 | 3.4 | 91 |
2141 | 3 | 26 | 48 | 91.6805 | 31.29487 | 3.0 | 4.6 | 3.5 | 89 |
2142 | 3 | 27 | 48 | 91.6805 | 30.96609 | 0.2 | 2.8 | 2.8 | 94 |
2232 | 2 | 27 | 50 | 92.42738 | 30.96609 | 1.8 | 3.2 | 2.7 | 92 |
4.2. SMAP-Enhanced Level-3 Radiometer SSM Product (SPL3SM_9km)
Index Point | Stations | Line | Column | Longitude | Latitude | Bias | RMSE | ubRMSE | RP | RS | Sat.Obser |
---|---|---|---|---|---|---|---|---|---|---|---|
34104 | 2 | 94 | 191 | 91.72718 | 31.9144 | 0.006 | 0.081 | 0.081 | 0.82 | 0.82 | 276 |
34105 | 2 | 95 | 191 | 91.72718 | 31.83156 | −0.048 | 0.078 | 0.062 | 0.90 | 0.91 | 280 |
34284 | 2 | 95 | 192 | 91.82054 | 31.83156 | −0.032 | 0.082 | 0.076 | 0.83 | 0.85 | 273 |
34106 | 3 | 96 | 191 | 91.72718 | 31.74879 | −0.037 | 0.089 | 0.081 | 0.84 | 0.88 | 285 |
34285 | 4 | 96 | 192 | 91.82054 | 31.74879 | −0.068 | 0.097 | 0.069 | 0.86 | 0.89 | 277 |
34107 | 2 | 97 | 191 | 91.72718 | 31.6661 | −0.021 | 0.078 | 0.075 | 0.84 | 0.85 | 289 |
34286 | 6 | 97 | 192 | 91.82054 | 31.6661 | −0.023 | 0.074 | 0.070 | 0.87 | 0.90 | 281 |
5. Discussion
6. Conclusions
- The average ubRMSE value over the different grids ranged from 0.028 to 0.072 m3/m3 and from 0.069 to 0.081 for 9 km and 36 km, respectively, which is higher than 0.04 m3/m3 (the accuracy target of the SMAP mission). Grid_2142 of the 36 km, exhibits the best performance. The bias of this grid is 0.024 m3/m3, RMSE is 0.36, and the ubRMSE is 0.028, smaller than 0.04 m3/m3.
- SMAP radiometer SSM retrievals perform relatively well. They effectively capture the absolute SSM and accurately reflect the short-term variability in soil moisture. The values of the SMAP-derived SSM retrievals presented an overestimation on wet days, especially during precipitation events. This phenomenon often causes satellite products to exhibit higher temporal variability than ground observations.
- It has been found that the ST ranges from 2.8 to 4.6 K, which is higher than the maximum error of 2 K of the SMAP requirements. It is considered the key factor contributing to the errors of the satellite product. The ST error is considered responsible for the low accuracy of the SSM retrievals on the 9 km scale.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlson, T.N.; Petropoulos, G. A new method for estimating of evapotranspiration and surface soil moisture from optical and thermal infrared measurements: The simplified triangle. Int. J. Remote Sens. 2019, 40, 7716–7729. [Google Scholar] [CrossRef]
- Howells, O.D.; Petropoulos, G.P.; Srivastava, P.K.; Triantakonstantis, D.; Sandric, I. Exploring the potential of SCAT-SAR SWI for soil moisture retrievals at selected COSMOS-UK sites. Int. J. Remote Sens. 2021, 42, 9155–9169. [Google Scholar] [CrossRef]
- North, M.R.; Petropoulos, G.P.; Ireland, G.; McCalmont, J.P. Appraising the capability of a land biosphere model as a tool in modelling land surface interactions: Results from its validation at selected European ecosystems. Earth Syst. Dyn. Discuss. 2015, 6, 217–265. [Google Scholar] [CrossRef] [Green Version]
- Vogel, M.M.; Orth, R.; Cheruy, F.; Hagemann, S.; Lorenz, R.; Hurk, B.J.J.M.; Seneviratne, S.I. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 2017, 44, 1511–1519. [Google Scholar] [CrossRef]
- Louka, P.; Papanikolaou, I.; Petropoulos, G.P.; Kalogeropoulos, K.; Stathopoulos, N. Identifying Spatially Correlated Patterns between Surface Water and Frost Risk Using EO Data and Geospatial Indices. Water 2020, 12, 700. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Moramarco, T.; Melone, F.; Wagner, W.; Hasenauer, S.; Hahn, S. Assimilation of Surface- and Root-Zone ASCAT Soil Moisture Products Into Rainfall–Runoff Modeling. IEEE Trans. Geosci. Remote Sens. 2011, 50, 2542–2555. [Google Scholar] [CrossRef]
- Suman, S.; Srivastava, P.K.; Petropoulos, G.P.; Pandey, D.K.; O’Neill, P.E. Appraisal of SMAP Operational Soil Moisture Product from a Global Perspective. Remote Sens. 2020, 12, 1977. [Google Scholar] [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.P.; Sandric, I.; Hristopulos, D.; Carlson, T.N. Evaporative Fluxes and Surface Soil Moisture Retrievals in a Mediterranean Setting from Sentinel-3 and the “Simplified Triangle”. Remote Sens. 2020, 12, 3192. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Wagner, W.; Naeimi, V.; Bartalis, Z.; Hasenauer, S. Improving runoff prediction through the assimilation of the ASCAT soil moisture product. Hydrol. Earth Syst. Sci. 2010, 14, 1881–1893. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; McCalmont, J.P. An Operational In Situ Soil Moisture & Soil Temperature Monitoring Network for West Wales, UK: The WSMN Network. Sensors 2017, 17, 1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, K.A.K.; Lamine, S.; Pavlides, A.; Petropoulos, G.P.; Bao, Y.; Srivastava, P.K.; Guan, Y. Large scale operational soil moisture mapping from passive MW radiometry: SMOS product evaluation in Europe & USA. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2019, 80, 206–217. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Srivastava, P.K.; Ferentinos, K.P.; Hristopoulos, D. Evaluating the capabilities of optical/TIR imaging sensing systems for quantifying soil water content. Geocarto Int. 2018, 35, 494–511. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef] [Green Version]
- Baldocchi, D.D.; Valentini, R.; Running, S.; Oechel, W.; Dhalman, R. Strategies for measuring and modeling CO2 and water vapor fluxes over terrestrial ecosystems. Glob. Chang. Biol. 1995, 2, 159–168. [Google Scholar] [CrossRef]
- Narvekar, P.S.; Entekhabi, D.; Kim, S.-B.; Njoku, E.G. Soil Moisture Retrieval Using L-Band Radar Observations. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3492–3506. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, K.-S.; Liu, Y.; Bi, H.; Chen, Q. Response of bistatic scattering to soil moisture and surface roughness at L-band. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; Volume 13, pp. 2098–2101. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Holmes, T.R.H.; de Jeu, R.A.M. Soil Moisture Retrievals From the WindSat Spaceborne Polarimetric Microwave Radiometer. IEEE Trans. Geosci. Remote Sens. 2011, 50, 2683–2694. [Google Scholar] [CrossRef]
- Njoku, E.G.; Chan, S.K. Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens. Environ. 2006, 100, 190–199. [Google Scholar] [CrossRef]
- Bindlish, R.; Jackson, T.; Cosh, M.; Zhao, T.; O’Neill, P. Global Soil Moisture From the Aquarius/SAC-D Satellite: Description and Initial Assessment. IEEE Geosci. Remote Sens. Lett. 2015, 12, 923–927. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Wang, G.; Holmes, T.R.H.; Liu, Y.Y.; Dolman, A.J.; De Jeu, R.A.M.; Jiang, T.; Zhang, P.; Shi, J. Global surface soil moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite. Int. J. Remote Sens. 2014, 35, 7007–7029. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Kędzior, M.; Zawadzki, J. Comparative study of soil moisture estimations from SMOS satellite mission, GLDAS database, and cosmic-ray neutrons measurements at COSMOS station in Eastern Poland. Geoderma 2016, 283, 21–31. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Srivastava, P.K.; Piles, M.; Pearson, S. Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management. Sustainability 2018, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Wigneron, J.-P.; Jackson, T.; O’Neill, P.; De Lannoy, G.; de Rosnay, P.; Walker, J.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J.; et al. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 2017, 192, 238–262. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R. Smap Enhanced L3 Radiometer Global Daily 9 km Ease-Grid Soil Moisture. Version 2. [SPL3SMP _ E]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA; Available online: https://nsidc.org/data/spl3smp_e/versions/2 (accessed on 22 March 2019).
- Das, N.N.; Entekhabi, D.; Kim, S.; Jagdhuber, T.; Dunbar, S.; Yuehl, S.; O’Neill, P.E.; Colliander, A.; Walker, J.; Jackson, T.J. High Resolution Soil Moisture Product Based on Smap Active-Passive Approach Using Copernicus Sentinel 1 Data. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; Volume XLII, pp. 3768–3770. [Google Scholar] [CrossRef]
- Deng, K.A.K.; Lamine, S.; Pavlides, A.; Petropoulos, G.P.; Srivastava, P.K.; Bao, Y.; Hristopulos, D.; Anagnostopoulos, V. Operational Soil Moisture from ASCAT in Support of Water Resources Management. Remote Sens. 2019, 11, 579. [Google Scholar] [CrossRef]
- Srivastava, P.; Islam, T.; Singh, S.; Gupta, M.; Petropoulos, G.; Gupta, D.; Jaafar, W.W.; Prasad, R. Soil Moisture Deficit Estimation Through SMOS Soil Moisture and MODIS Land Surface Temperature. In Satellite Soil Moisture Retrieval: Techniques and Applications; Elsevier: Amsterdam, The Netherlands, 2016; pp. 333–347. [Google Scholar] [CrossRef]
- Ge, N.; Zhong, L.; Ma, Y.; Cheng, M.; Wang, X.; Zou, M.; Huang, Z. Estimation of Land Surface Heat Fluxes Based on Landsat 7 ETM+ Data and Field Measurements over the Northern Tibetan Plateau. Remote Sens. 2019, 11, 2899. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Qian, B.; Bao, Y.; Petropoulos, G.P.; Liu, X.; Li, L. Microwave Land Emissivity Calculations over the Qinghai-Tibetan Plateau Using FY-3B/MWRI Measurements. Remote Sens. 2019, 11, 2206. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chai, L.; Lu, Z.; Liu, S.; Qu, Y.; Geng, D.; Song, Y.; Guan, Y.; Guo, Z.; Wang, J.; et al. Evaluation of SMAP, SMOS-IC, FY3B, JAXA, and LPRM Soil Moisture Products over the Qinghai-Tibet Plateau and Its Surrounding Areas. Remote Sens. 2019, 11, 792. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, K.; Qin, J.; Cui, Q.; Lu, H.; La, Z.; Han, M.; Tang, W. Evaluation of SMAP, SMOS, and AMSR2 soil moisture retrievals against observations from two networks on the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 5780–5792. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, K.; Qin, J.; Chen, Y.; Tang, W.; Montzka, C.; Wu, H.; Lin, C.; Han, M.; Vereecken, H. Spatiotemporal analysis of soil moisture observations within a Tibetan mesoscale area and its implication to regional soil moisture measurements. J. Hydrol. 2013, 482, 92–104. [Google Scholar] [CrossRef]
- Ahmad, J.A.; Forman, B.A.; Kumar, S.V. Soil moisture estimation in South Asia via assimilation of SMAP retrievals. Hydrol. Earth Syst. Sci. 2022, 26, 2221–2243. [Google Scholar] [CrossRef]
- Li, C.; Lu, H.; Yang, K.; Han, M.; Wright, J.S.; Chen, Y.; Yu, L.; Xu, S.; Huang, X.; Gong, W. The Evaluation of SMAP Enhanced Soil Moisture Products Using High-Resolution Model Simulations and In-Situ Observations on the Tibetan Plateau. Remote Sens. 2018, 10, 535. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Yang, K.; Lu, N.; Chen, Y.; Zhao, L.; Han, M. Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sens. Environ. 2013, 138, 1–9. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, J.; Liu, J.; Wen, Y.; Wang, Y. Soil Moisture Retrieval Using Microwave Remote Sensing Data and a Deep Belief Network in the Naqu Region of the Tibetan Plateau. Sustainability 2021, 13, 12635. [Google Scholar] [CrossRef]
- Zeng, J.; Li, Z.; Chen, Q.; Bi, H.; Qiu, J.; Zou, P. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sens. Environ. 2015, 163, 91–110. [Google Scholar] [CrossRef]
- Wei, Z.; Meng, Y.; Zhang, W.; Peng, J.; Meng, L. Downscaling SMAP soil moisture estimation with gradient boosting decision tree regression over the Tibetan Plateau. Remote Sens. Environ. 2019, 225, 30–44. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.; Wei, L.; Wang, W. Multi-Scale Validation of SMAP Soil Moisture Products over Cold and Arid Regions in Northwestern China Using Distributed Ground Observation Data. Remote Sens. 2017, 9, 327. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zeng, J.; Cui, C.; Li, Z.; Chen, K.-S.; Bai, X.; Xu, J. Soil Moisture Retrieval From SMAP: A Validation and Error Analysis Study Using Ground-Based Observations Over the Little Washita Watershed. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1394–1408. [Google Scholar] [CrossRef]
- Enrekhabi, D.; Yueh, S.; O’Neil, P.E.; Kellogg, K.H.; Allen, A.; Bindlish, R.; Administration, S.; Das, N.; De Lannoy, G.; Dunbar, R.S.; et al. SMAP Handbook; JPL Publication: Pasadena, CA, USA, 2014; p. 192. [Google Scholar]
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R. SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 Km EASE-Grid Soil Moisture, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Gupta, D.; Srivastava, P.; Singh, A.; Petropoulos, G.; Stathopoulos, N.; Prasad, R. SMAP Soil Moisture Product Assessment over Wales, UK. Using Observations from the WSMN Ground Monitoring Network. Sustainability 2021, 13, 6019. [Google Scholar] [CrossRef]
- O’Neill, P.; Chan, S.; Bindlish, R.; Jackson, T.; Colliander, A.; Dunbar, S.; Chen, F.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Assessment of version 4 of the SMAP passive soil moisture standard product. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3941–3944. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.P.; Ireland, G.; Srivastava, P.K.; Ioannou-Katidis, P. An appraisal of the accuracy of operational soil moisture estimates from SMOS MIRAS using validated in situ observations acquired in a Mediterranean environment. Int. J. Remote Sens. 2014, 35, 5239–5250. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T. Transition of 3B42/3B43 Research Product from Monthly to Climatological Calibration/Adjustment. 2015; p. 11. Available online: http://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_TMPA_restart.pdf (accessed on 3 April 2020).
- Holmes, T.R.H.; Jackson, T.J.; Reichle, R.H.; Basara, J.B. An assessment of surface soil temperature products from numerical weather prediction models using ground-based measurements. Water Resour. Res. 2012, 48, W02531. [Google Scholar] [CrossRef]
- Su, Z.; Wen, J.; Dente, L.; van der Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci. 2011, 15, 2303–2316. [Google Scholar] [CrossRef]
- Escorihuela, M.J.; Chanzy, A.; Wigneron, J.-P.; Kerr, Y.H. Effective soil moisture sampling depth of L-band radiometry: A case study. Remote Sens. Environ. 2010, 114, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Al-Yaari, A.; Wigneron, J.-P.; Ducharne, A.; Kerr, Y.; de Rosnay, P.; de Jeu, R.; Govind, A.; Al Bitar, A.; Albergel, C.; Muñoz-Sabater, J.; et al. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to Land Data Assimilation System estimates. Remote Sens. Environ. 2014, 149, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Owe, M.; De Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. Atmos. 2008, 113, F01002. [Google Scholar] [CrossRef]
- Adams, J.R.; McNairn, H.; Berg, A.A.; Champagne, C. Evaluation of near-surface soil moisture data from an AAFC monitoring network in Manitoba, Canada: Implications for L-band satellite validation. J. Hydrol. 2015, 521, 582–592. [Google Scholar] [CrossRef]
- Entekhabi, D. SMAP Handbook. Soil Moisture Active Passive; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2014. [Google Scholar]
- Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Assessment of the SMAP Passive Soil Moisture Product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume II. Radar Remote Sensing and Surface Scattering and Emission Theory; Artech House: Washington, DC, USA, 1982. [Google Scholar]
- Wan, G.; Yang, M.; Liu, Z.; Wang, X.; Liang, X. The Precipitation Variations in the Qinghai-Xizang (Tibetan) Plateau during 1961–2015. Atmosphere 2017, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Wagner, W.; Naeimi, V.; Scipal, K.; de Jeu, R.; Martínez-Fernández, J. Soil moisture from operational meteorological satellites. Hydrogeol. J. 2006, 15, 121–131. [Google Scholar] [CrossRef]
- Crow, W.T.; Wood, E.F. Multi-scale dynamics of soil moisture variability observed during SGP’97. Geophys. Res. Lett. 1999, 26, 3485–3488. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Ryu, D.; Berg, A.A.; Rodell, M.; Jackson, T.J. Field observations of soil moisture variability across scales. Water Resour. Res. 2008, 44, 1839–1851. [Google Scholar] [CrossRef] [Green Version]
- Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. Performance Metrics for Soil Moisture Retrievals and Application Requirements. J. Hydrometeorol. 2010, 11, 832–840. [Google Scholar] [CrossRef]
- Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Goodrich, D.C.; Moran, M.S.; Du, J.Y. Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4256–4272. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, K.A.K.; Petropoulos, G.P.; Bao, Y.; Pavlides, A.; Saidou Chaibou, A.A.; Habtemicheal, B.A. An Examination of the SMAP Operational Soil Moisture Products Accuracy at the Tibetan Plateau. Remote Sens. 2022, 14, 6255. https://doi.org/10.3390/rs14246255
Deng KAK, Petropoulos GP, Bao Y, Pavlides A, Saidou Chaibou AA, Habtemicheal BA. An Examination of the SMAP Operational Soil Moisture Products Accuracy at the Tibetan Plateau. Remote Sensing. 2022; 14(24):6255. https://doi.org/10.3390/rs14246255
Chicago/Turabian StyleDeng, Khidir Abdalla Kwal, George P. Petropoulos, Yansong Bao, Andrew Pavlides, Abdoul Aziz Saidou Chaibou, and Birhanu Asmerom Habtemicheal. 2022. "An Examination of the SMAP Operational Soil Moisture Products Accuracy at the Tibetan Plateau" Remote Sensing 14, no. 24: 6255. https://doi.org/10.3390/rs14246255
APA StyleDeng, K. A. K., Petropoulos, G. P., Bao, Y., Pavlides, A., Saidou Chaibou, A. A., & Habtemicheal, B. A. (2022). An Examination of the SMAP Operational Soil Moisture Products Accuracy at the Tibetan Plateau. Remote Sensing, 14(24), 6255. https://doi.org/10.3390/rs14246255