The Effect of Spatial Resolution and Temporal Sampling Schemes on the Measurement Error for a Moon-Based Earth Radiation Observatory
"> Figure 1
<p>The typical observing scenario of a MERO system and the pathway of the radiation from the pixel on the Earth top of atmosphere (TOA) (hollow green rectangle) to the detector unit (solid green rectangle) of the focal plane array of the MERO.</p> "> Figure 2
<p>The selected true hourly TOA Earth TOA (<b>a</b>) OSR flux and (<b>b</b>) OLR flux data and the temporal interpolations to derive the 1-min true OSR and OLR fluxes of a location on Earth (20° E, 30° S). The true hourly data comes from the CERES SYN dataset of March 2019.</p> "> Figure 3
<p>The correlation of a detector array and a pixel array of a MERO system. A pixel is discretized into sub grid points (such as pixel 8’); each sub grid point represents an Earth TOA area of 0.1° latitude × 0.1° longitude.</p> "> Figure 4
<p>Geometries of the viewing zenith angle (<span class="html-italic">v<sub>i</sub></span>), the relative azimuth angle (<span class="html-italic">r<sub>i</sub></span>), the solar zenith angle (<span class="html-italic">s<sub>i</sub></span>), and Earth’s viewing angle (<span class="html-italic">ω<sub>i</sub></span>) of a MERO sensor towards a sub grid point <span class="html-italic">i</span> within a pixel on the Earth TOA (top of the atmosphere).</p> "> Figure 5
<p>Pixel-averaged spatial sampling error as a function of spatial resolution of a MERO system (range of spatial resolution is 1000 km–20 km, step at the range of 1000 km–100 km is 100 km, step at the range of 100 km–10 km is 10 km).</p> "> Figure 6
<p>Comparisons of the true and the simulated MERO-measured TOA OSR fluxes of an Earth’s location (0° E, 40° S) in March 2019 under sampling intervals of (<b>a</b>) 3.5 h, (<b>b</b>) 2.5 h, (<b>c</b>) 2 h and (<b>d</b>) 1 h, respectively.</p> "> Figure 7
<p>Temporal sampling error induced by sampling intervals under a constant sampling temporal sequence (start time of 0 min); range of the sampling interval is 240 min–1 min; step is 10 min at the range of 240 min–20 min’ step is 1 min at the range of 20 min–1 min.</p> "> Figure 8
<p>Comparisons of the true and simulated MERO-measured TOA OSR fluxes under a fixed sampling interval of 2 h (<b>a</b>) with the sampling temporal sequence in the start time of 16 min and (<b>b</b>) with the sampling temporal sequence in the start time of 104 min.</p> "> Figure 9
<p>Effect of sampling temporal sequence on the measurement error under (<b>a</b>) a sampling interval of 2 h and (<b>b</b>) a sampling interval of 1.5 h; the sampling temporal sequence start time step is 1 min.</p> "> Figure 10
<p>The effect of sampling temporal sequence on the measurement error under various sampling intervals; the range of the sampling interval is 240 min–1 min; step is 10 min at the range of 240 min–20 min; step is 1 min at the range of 20 min–1 min.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. The True OSR and OLR Fluxes
2.2. Simulation of MERO-Measured TOA OSR and OLR Fluxes
2.3. Error Derivation
3. Results
3.1. Spatial Resolution Induced Errors (Spatial Sampling Error)
3.2. Temporal Sampling Scheme Induced Errors (Temporal Sampling Error)
3.2.1. Errors Induced by Sampling Interval
3.2.2. Errors Induced by Sampling Temporal Sequence
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brown, P.T.; Caldeira, K. Greater future global warming inferred from Earth’s recent energy budget. Nature 2017, 552, 45–50. [Google Scholar] [CrossRef]
- Barkstrom, B.R.; Smith, G.L. The Earth Radiation Budget Experiment: Science and implementation. Rev. Geophys. 1986, 24, 379–390. [Google Scholar] [CrossRef]
- Wielicki, B.A.; Barkstrom, B.R.; Harrison, E.F.; Iii, R.B.L.; Smith, G.L.; Cooper, J.E. Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Am. Meteorol. Soc. 1996, 77, 853–868. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Smith, G.L.; Priestley, K.J.; Loeb, N.G. Clouds and Earth Radiant Energy System: From Design to Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1729–1738. [Google Scholar] [CrossRef]
- Harries, J.E.; Russell, J.; Hanafin, J.; Brindley, H.; Futyan, J.; Rufus, J.; Kellock, S.; Matthews, G.; Wrigley, R.; Last, A. The geostationary earth radiation budget project. Bull. Am. Meteorol. Soc. 2005, 86, 945–960. [Google Scholar] [CrossRef] [Green Version]
- Burt, J.; Smith, B. Deep Space Climate Observatory: The DSCOVR mission. In Proceedings of the 2012 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2012; pp. 1–13. [Google Scholar]
- Smith, G.L.; Wong, T. Time-Sampling Errors of Earth Radiation From Satellites: Theory for Monthly Mean Albedo. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3107–3115. [Google Scholar] [CrossRef]
- Smith, G.L.; Wong, T.; Bush, K.A. Time-Sampling Errors of Earth Radiation From Satellites: Theory for Outgoing Longwave Radiation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1656–1665. [Google Scholar] [CrossRef]
- Dewitte, S.; Gonzalez, L.; Clerbaux, N.; Ipe, A.; Bertrand, C.; De Paepe, B. The Geostationary Earth Radiation Budget Edition 1 data processing algorithms. Adv. Space Res. 2008, 41, 1906–1913. [Google Scholar] [CrossRef]
- Duan, W.; Huang, S.; Nie, C. Conceptual design of a Moon-Based Earth Radiation Observatory. Int. J. Remote Sens. 2018, 39, 5834–5849. [Google Scholar] [CrossRef]
- Wielicki, B.A.; Young, D.F.; Mlynczak, M.G.; Thome, K.J.; Leroy, S.; Corliss, J.; Anderson, J.G.; Ao, C.O.; Bantges, R.; Best, F.; et al. Achieving Climate Change Absolute Accuracy in Orbit. Bull. Am. Meteorol. Soc. 2013, 94, 1519–1539. [Google Scholar] [CrossRef] [Green Version]
- Swartz, W.H.; Lorentz, S.R.; Papadakis, S.J.; Huang, P.M.; Smith, A.W.; Deglau, D.M.; Yu, Y.; Reilly, S.M.; Reilly, N.M.; Anderson, D.E. RAVAN: CubeSat Demonstration for Multi-Point Earth Radiation Budget Measurements. Remote Sens. 2019, 11, 796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meftah, M.; Damé, L.; Keckhut, P.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.; Bertran, E.; Carta, J.-P.; Rogers, D.; Abbaki, S.; et al. UVSQ-SAT, a Pathfinder CubeSat Mission for Observing Essential Climate Variables. Remote Sens. 2020, 12, 92. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.; Smith, G.L.; Kato, S.; Loeb, N.G.; Kopp, G.; Shrestha, A.K. On the Lessons Learned From the Operations of the ERBE Nonscanner Instrument in Space and the Production of the Nonscanner TOA Radiation Budget Data Set. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5936–5947. [Google Scholar] [CrossRef] [PubMed]
- Loeb, N.G. Ceres SYN ED4A Data Quality, 4th ed.; CERES Science Team, Ed.; NASA Atmospheric Science Data Center (ASDC): Hampton, VA, USA, 2017.
- Nascimento, G.d.S.; Ruhoff, A.; Cavalcanti, J.R.; Marques, D.d.M.; Roberti, D.R.; Rocha, H.R.d.; Munar, A.M.; Fragoso, C.R.; Oliveira, M.B.L.d. Assessing CERES Surface Radiation Components for Tropical and Subtropical Biomes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3826–3840. [Google Scholar] [CrossRef]
- Doelling, D.R.; Loeb, N.G.; Keyes, D.F.; Nordeen, M.L.; Morstad, D.; Nguyen, C.; Wielicki, B.A.; Young, D.F.; Sun, M. Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Ocean. Technol. 2013, 30, 1072–1090. [Google Scholar] [CrossRef]
- Duan, W.; Huang, S.; Nie, C. Entrance Pupil Irradiance Estimating Model for a Moon-Based Earth Radiation Observatory Instrument. Remote Sens. 2019, 11, 583. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Corbett, J.; Eitzen, Z.; Liang, L. Next-generation angular distribution models for top-of-atmosphere radiative flux calculation from CERES instruments: Methodology. Atmos. Meas. Tech. 2015, 7, 611–632. [Google Scholar] [CrossRef] [Green Version]
- Loeb, N.G.; Kato, S.; Loukachine, K.; Manalo-Smith, N. Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth’s Radiant Energy System Instrument on the Terra Satellite. Part I: Methodology. J. Atmos. Ocean. Technol. 2005, 22, 338–351. [Google Scholar] [CrossRef]
- Wielicki, B.A.; Green, R.; Tolson, C.; Fan, A. Clouds and the Earth’s Radiant Energy System (CERES) Algorithm Theoretical Basis Document; Atmospheric Sciences Division, NASA Langley Research Center: Hampton, VA, USA, 1995.
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–323. [Google Scholar] [CrossRef]
- Loeb, N.G.; Doelling, D.R.; Wang, H.; Su, W.; Nguyen, C.; Corbett, J.G.; Liang, L.; Mitrescu, C.; Rose, F.G.; Kato, S. Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. J. Clim. 2018, 31, 895–918. [Google Scholar] [CrossRef]
- Rogalski, A. Progress in focal plane array technologies. Prog. Quantum Electron. 2012, 36, 342–473. [Google Scholar] [CrossRef]
Surface Type | Cloud Conditions | Cloud or Meteorological Parameters | Angles |
---|---|---|---|
land and desert |
| cloudy condition:
|
|
ocean |
|
|
|
snow |
| cloudy condition:
|
|
Surface Type | Cloud Conditions | Local Time Type | Cloud or Meteorological Parameters | Angles |
---|---|---|---|---|
land and desert |
|
|
| viewing zenith angle (9 intervals: 0°–90° with step of 10°) |
ocean |
|
|
| viewing zenith angle (9 intervals: 0°–90° with step of 10°) |
snow |
|
|
| viewing zenith angle (9 intervals: 0°–90° with step of 10°) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, W.; Liu, J.; Yan, Q.; Ruan, H.; Jin, S. The Effect of Spatial Resolution and Temporal Sampling Schemes on the Measurement Error for a Moon-Based Earth Radiation Observatory. Remote Sens. 2021, 13, 4432. https://doi.org/10.3390/rs13214432
Duan W, Liu J, Yan Q, Ruan H, Jin S. The Effect of Spatial Resolution and Temporal Sampling Schemes on the Measurement Error for a Moon-Based Earth Radiation Observatory. Remote Sensing. 2021; 13(21):4432. https://doi.org/10.3390/rs13214432
Chicago/Turabian StyleDuan, Wentao, Jiandong Liu, Qingyun Yan, Haibing Ruan, and Shuanggen Jin. 2021. "The Effect of Spatial Resolution and Temporal Sampling Schemes on the Measurement Error for a Moon-Based Earth Radiation Observatory" Remote Sensing 13, no. 21: 4432. https://doi.org/10.3390/rs13214432
APA StyleDuan, W., Liu, J., Yan, Q., Ruan, H., & Jin, S. (2021). The Effect of Spatial Resolution and Temporal Sampling Schemes on the Measurement Error for a Moon-Based Earth Radiation Observatory. Remote Sensing, 13(21), 4432. https://doi.org/10.3390/rs13214432