PointNet++ Network Architecture with Individual Point Level and Global Features on Centroid for ALS Point Cloud Classification
"> Figure 1
<p>Feature learning with (Multi-scale grouping) MSG methods. The yellow point represents the centroid point whilst the blue, orange and green points represent the sample points in radius r1, r2, and r3, respectively. The rectangle represents the feature vector concatenated at different scales for future processing.</p> "> Figure 2
<p>Feature learning with multi-resolution grouping (MRG) method. (<b>a</b>) Sketch of MRG, with each cone representing feature learning. (<b>b</b>) Feature learning in the original PointNet++. (<b>c</b>) Feature learning with proposed method.</p> "> Figure 3
<p>Illustration of proposed network architecture. The network adds additional features to local features. The input point clouds on the left are colored by elevation, and the output is the classification result.</p> "> Figure 4
<p>Scene I show the data for training and validation. Scene II is the test set. The following nine classes are discerned: power line, low vegetation, impervious surfaces, car, fence/hedge, roof, façade, shrub and tree.</p> "> Figure 5
<p>The performance of different proportions elevation information on interpolation.</p> "> Figure 6
<p>(<b>a</b>) The classification results for method (4), and (<b>b</b>) the error map.</p> "> Figure 7
<p>The classification results of the PointNet++ and our proposed method in a selected area.</p> ">
Abstract
:1. Introduction
- The point-level and global information on the centroid point in the sample layer in the PointNet++ network is added to the local feature at multiple scales to extract other useful informative features to solve the uneven distribution of point clouds problem.
- One modified loss function based on focal loss function is proposed to solve the extremely uneven category distribution problem.
- The elevation- and distance-based interpolation method is proposed for objects in ALS point clouds that exhibit discrepancies in elevation distributions.
- In addition to a theoretical analysis, experimental evaluations are conducted using the Vaihingen 3D dataset of the International Society for Photogrammetry and Remote Sensing (ISPRS) and the GML(B) dataset.
2. Related Work
2.1. Using Handcrafted Features and Classifiers
2.2. Using Deep Features and Neural Networks
2.3. PointNet and PointNet++ Network
3. Materials and Methods
3.1. Point-Level and Global Information
3.2. Modified Focal Loss Function
3.3. Elevation and Distance-Based Interpolation Method
4. Experimental Results and Analysis
4.1. Test of Loss Function
4.2. Test of Interpolation Method
4.3. Test of Point-Level and Global Information
5. Discussion
5.1. Comparisons with Other Methods
5.2. Validation of Generalisation Ability
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, B.; Xu, W.; Dong, Z. Automated Extraction of Building Outlines from Airborne Laser Scanning Point Clouds. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1399–1403. [Google Scholar] [CrossRef]
- Hebel, M.; Arens, M.; Stilla, U. Change detection in urban areas by object-based analysis and on-the-fly comparison of multi-view ALS data. ISPRS J. Photogramm. Remote Sens. 2013, 86, 52–64. [Google Scholar] [CrossRef]
- Yang, B.; Huang, R.; Li, J.; Tian, M.; Dai, W.; Zhong, R. Automated Reconstruction of Building LoDs from Airborne LiDAR Point Clouds Using an Improved Morphological Scale Space. Remote Sens. 2017, 9, 14. [Google Scholar]
- Huang, R.; Xu, Y.; Hong, D.; Yao, W.; Ghamisi, P.; Stilla, U. Deep point embedding for urban classification using ALS point clouds: A new perspective from local to global. ISPRS J. Photogramm. Remote Sens. 2020, 163, 62–81. [Google Scholar] [CrossRef]
- Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U. Detection of fallen trees in ALS point clouds using a Normalized Cut approach trained by simulation. ISPRS J. Photogramm. Remote Sens. 2015, 105, 252–271. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, Y.; Wang, D.; Chen, A.; Ye, Z. Three-Dimensional Reconstruction of Structural Surface Model of Heritage Bridges Using UAV-Based Photogrammetric Point Clouds. Remote Sens. 2019, 11, 1204. [Google Scholar]
- Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 2015, 158, 295–310. [Google Scholar] [CrossRef]
- Li, W.; Wang, F.; Xia, G. A geometry-attentional network for ALS point cloud classification. ISPRS J. Photogramm. Remote Sens. 2020, 164, 26–40. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X.; Ning, X. SVM-Based Classification of Segmented Airborne LiDAR Point Clouds in Urban Areas. Remote Sens. 2013, 5, 3749–3775. [Google Scholar] [CrossRef] [Green Version]
- Weinmann, M.; Schmidt, A.; Mallet, C.; Hinz, S.; Rottensteiner, F.; Jutzi, B. Contextual Classification of Point Cloud Data by Exploiting Individual 3D Neigbourhoods. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-3/W4, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Horvat, D.; Žalik, B.; Mongus, D. Context-dependent detection of non-linearly distributed points for vegetation classification in airborne LiDAR. ISPRS J. Photogramm. Remote Sens. 2016, 116, 1–14. [Google Scholar] [CrossRef]
- Niemeyer, J.; Rottensteiner, F.; Soergel, U.; Heipke, C. Hierarchical higher order crf for the classification of airborne lidar point clouds in urban areas. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B3, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Qi, R. Deep Learning on Point Clouds for 3D Scene Understanding. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2018. [Google Scholar]
- Balado, J.; Arias, P.; Díaz-Vilariño, L.; González-deSantos, L.M. Automatic CORINE land cover classification from airborne LIDAR data. Procedia Comput. Sci. 2018, 126, 186–194. [Google Scholar] [CrossRef]
- Balado, J.; Díaz-Vilariño, L.; Arias, P.; González-Desantos, L.M. Automatic LOD0 classification of airborne LiDAR data in urban and non-urban areas. Eur. J. Remote Sens. 2018, 51, 978–990. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. arXiv 2017, arXiv:1706.02413. [Google Scholar]
- Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. PointCNN: Convolution On Χ-Transformed Points. arXiv 2018, arXiv:1801.07791v5. [Google Scholar]
- Jiang, M.; Wu, Y.; Zhao, T.; Zhao, Z.; Lu, C. PointSIFT: A SIFT-like Network Module for 3D Point Cloud Semantic Segmentation. arXiv 2018, arXiv:1807.00652v2. [Google Scholar]
- Wen, C.; Yang, L.; Li, X.; Peng, L.; Chi, T. Directionally constrained fully convolutional neural network for airborne LiDAR point cloud classification. ISPRS J. Photogramm. Remote Sens. 2020, 162, 50–62. [Google Scholar]
- Aoki, Y.; Goforth, H.; Srivatsan, R.A.; Lucey, S. PointNetLK: Robust & Efficient Point Cloud Registration using PointNet. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Thomas, H.; Qi, C.R.; Deschaud, J.; Marcotegui, B.; Goulette, F.O.; Guibas, L.J. KPConv: Flexible and Deformable Convolution for Point Clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Antonarakis, A.S.; Richards, K.S.; Brasington, J. Object-based land cover classification using airborne LiDAR. Remote Sens. Environ. 2008, 112, 2988–2998. [Google Scholar] [CrossRef]
- Johnson, A.E.; Hebert, M. Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 433–449. [Google Scholar] [CrossRef] [Green Version]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3212–3217. [Google Scholar]
- Federico Tombari, S.S.A.L. Unique Signatures of Histograms for Local Surface Description. In Proceedings of the 11th European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; pp. 356–369. [Google Scholar]
- Weinmann, M.; Jutzi, B.; Hinz, S.; Mallet, C. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J. Photogramm. Remote Sens. 2015, 105, 286–304. [Google Scholar] [CrossRef]
- Mallet, C. Analysis of Full-Waveform Lidar Data for Urban Area Mapping. Ph.D. Thesis, Télécom ParisTech, Paris, France, 2010. [Google Scholar]
- Chehata, N.; Guo, L.; Mallet, C. Airborne Lidar Feature Selection for Urban Classification using Random Forests. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, 207–212. [Google Scholar]
- Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual classification of lidar data and building object detection in urban areas. ISPRS J. Photogramm. Remote Sens. 2014, 87, 152–165. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, W.; Xu, B.; Zhu, Q.; Jiang, S.; Huang, W. A Convolutional Neural Network-Based 3D Semantic Labeling Method for ALS Point Clouds. Remote Sens. 2017, 9, 936. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.R.; Su, H.; NieBner, M.; Dai, A.; Yan, M.; Guibas, L.J. Volumetric and Multi-view CNNs for Object Classification on 3D Data. In Proceedings of the IEEE International Conference on Computer Vision (CVRP), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view Convolutional Neural Networks for 3D Shape Recognition. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 945–953. [Google Scholar]
- Boulch, A.; Guerry, J.; Le Saux, B.; Audebert, N. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks. Comput. Graph. 2018, 71, 189–198. [Google Scholar] [CrossRef]
- Gevaert, C.M.; Persello, C.; Sliuzas, R.; Vosselman, G. Informal settlement classification using point-cloud and image-based features from UAV data. ISPRS J. Photogramm. Remote Sens. 2017, 125, 225–236. [Google Scholar]
- Fan, R.; Shuai, H.; Liu, Q. PointNet-Based Channel Attention VLAD Network. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision (PRCV), Xi’an, China, 8–11 November 2019. [Google Scholar]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. ACM Trans. Graph. 2019, 38, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Jiang, L.; Fu, C.; Jia, J. PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 5560–5568. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar]
- Shapovalov, R.; Velizhev, A.; Barinova, O. Non-Associative Markov Networks for 3D Point Cloud Classification. In Proceedings of the Photogrammetric Computer Vision and Image Analysis, Saint-Mandé, France, 1–3 September 2010. [Google Scholar]
Categories | In Training | In Test | Categories | In Training | In Test |
---|---|---|---|---|---|
Powerline | 0.07 | 0.15 | Roof | 20.17 | 26.48 |
Low vegetation | 23.99 | 23.97 | Facade | 3.61 | 2.72 |
Impervious surfaces | 25.70 | 24.77 | Shrub | 6.31 | 6.03 |
Car | 0.61 | 0.90 | Tree | 17.9 | 13.17 |
Fence/Hedge | 1.60 | 1.80 |
Loss Function | AvgP | AvgR | AvgF1 | OA | Eval Loss | Eval Accuracy |
---|---|---|---|---|---|---|
Cross entropy | 0.719 | 0.696 | 0.690 | 0.812 | 0.200 | 0.934 |
Focal loss (1) | 0.767 | 0.651 | 0.686 | 0.825 | 0.044 | 0.940 |
Focal loss (2) | 0.602 | 0.722 | 0.634 | 0.782 | 1.177 | 0.869 |
Modified Focal Loss | 0.742 | 0.689 | 0.705 | 0.820 | 0.061 | 0.928 |
Method | Parameter | AvgP | AvgR | AvgF1 | OA | Eval Loss | Eval Accuracy |
---|---|---|---|---|---|---|---|
(a) | , | 0.742 | 0.689 | 0.705 | 0.820 | 0.061 | 0.928 |
(b) | , | 0.742 | 0.696 | 0.707 | 0.826 | 0.057 | 0.935 |
(c) | , | 0.752 | 0.686 | 0.707 | 0.827 | 0.062 | 0.931 |
(d) | , | 0.749 | 0.683 | 0.703 | 0.823 | 0.056 | 0.934 |
Item | Method (1) | Method (2) | Method (3) | Method (4) | ||||
---|---|---|---|---|---|---|---|---|
adding information | P | G | P | G | P | G | P | G |
First layer | 64 | 0 | 64 | 0 | 64 | 64 | 64 | 128 |
Second layer | 64 | 0 | 128 | 0 | 64 | 64 | 128 | 256 |
Third layer | 64 | 0 | 192 | 0 | 64 | 64 | 256 | 512 |
Fourth layer | 64 | 0 | 256 | 0 | 64 | 64 | 512 | 1024 |
AvgP | AvgR | AvgF1 | OA | Eval Loss | Eval Accuracy | |
---|---|---|---|---|---|---|
Method (1) | 0.758 | 0.675 | 0.703 | 0.826 | 0.054 | 0.937 |
Method (2) | 0.744 | 0.685 | 0.708 | 0.831 | 0.059 | 0.932 |
Method (3) | 0.751 | 0.697 | 0.709 | 0.829 | 0.059 | 0.932 |
Method (4) | 0.743 | 0.697 | 0.712 | 0.832 | 0.059 | 0.932 |
Class | Powerline | Low_veg | Imp_surf | Car | Fence_hedge | Roof | Façade | Shrub | Tree |
---|---|---|---|---|---|---|---|---|---|
Powerline | 0.741 | 0.000 | 0.000 | 0.000 | 0.000 | 0.219 | 0.010 | 0.010 | 0.021 |
Low_veg | 0.000 | 0.840 | 0.062 | 0.001 | 0.007 | 0.016 | 0.009 | 0.053 | 0.011 |
Imp_surf | 0.000 | 0.097 | 0.892 | 0.003 | 0.003 | 0.001 | 0.001 | 0.003 | 0.000 |
Car | 0.000 | 0.051 | 0.007 | 0.851 | 0.007 | 0.001 | 0.010 | 0.057 | 0.018 |
Fence_hedge | 0.000 | 0.053 | 0.001 | 0.018 | 0.612 | 0.013 | 0.008 | 0.167 | 0.128 |
Roof | 0.001 | 0.010 | 0.002 | 0.001 | 0.002 | 0.951 | 0.016 | 0.008 | 0.010 |
Façade | 0.000 | 0.026 | 0.006 | 0.012 | 0.010 | 0.197 | 0.619 | 0.050 | 0.081 |
Shrub | 0.000 | 0.196 | 0.005 | 0.016 | 0.097 | 0.044 | 0.056 | 0.411 | 0.176 |
tree | 0.001 | 0.018 | 0.000 | 0.001 | 0.019 | 0.098 | 0.017 | 0.094 | 0.753 |
precision | 0.778 | 0.811 | 0.937 | 0.701 | 0.295 | 0.899 | 0.521 | 0.470 | 0.846 |
recall | 0.741 | 0.840 | 0.892 | 0.851 | 0.612 | 0.951 | 0.619 | 0.411 | 0.753 |
F1 score | 0.759 | 0.825 | 0.914 | 0.769 | 0.398 | 0.924 | 0.566 | 0.438 | 0.797 |
Method | Powerline | Low_veg | Imp_surf | Car | Fence Hedge | Roof | Façade | Shrub | tree | OA | AvgF1 |
---|---|---|---|---|---|---|---|---|---|---|---|
PointNet | 0.526 | 0.700 | 0.832 | 0.112 | 0.075 | 0.748 | 0.078 | 0.246 | 0.454 | 0.657 | 0.419 |
PointNet++ | 0.579 | 0.796 | 0.906 | 0.661 | 0.315 | 0.916 | 0.543 | 0.416 | 0.770 | 0.812 | 0.656 |
PointSift | 0.557 | 0.807 | 0.909 | 0.778 | 0.305 | 0.925 | 0.569 | 0.444 | 0.796 | 0.822 | 0.677 |
D-FCN | 0.704 | 0.802 | 0.914 | 0.781 | 0.370 | 0.930 | 0.605 | 0.460 | 0.794 | 0.822 | 0.707 |
PointCNN | 0.615 | 0.827 | 0.918 | 0.758 | 0.359 | 0.927 | 0.578 | 0.491 | 0.781 | 0.833 | 0.695 |
KPConv | 0.631 | 0.823 | 0.914 | 0.725 | 0.252 | 0.944 | 0.603 | 0.449 | 0.812 | 0.837 | 0.684 |
GADH-Net | 0.668 | 0.825 | 0.915 | 0.783 | 0.350 | 0.946 | 0.633 | 0.498 | 0.839 | 0.850 | 0.717 |
our | 0.770 | 0.827 | 0.914 | 0.769 | 0.396 | 0.924 | 0.568 | 0.442 | 0.798 | 0.832 | 0.712 |
Modules | Ground | Building | Tree | Low_veg | OA | AvgF1 | AvgP | AvgR |
---|---|---|---|---|---|---|---|---|
PointNet++ | 0.980 | 0.635 | 0.768 | 0.298 | 0.933 | 0.670 | 0.673 | 0.677 |
Method (1) | 0.979 | 0.709 | 0.784 | 0.373 | 0.939 | 0.711 | 0.727 | 0.722 |
Method (2) | 0.982 | 0.735 | 0.775 | 0.388 | 0.942 | 0.720 | 0.724 | 0.730 |
Method (3) | 0.981 | 0.712 | 0.747 | 0.425 | 0.938 | 0.716 | 0.725 | 0.735 |
Method (4) | 0.985 | 0.714 | 0.764 | 0.426 | 0.943 | 0.722 | 0.746 | 0.728 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, G.; Xu, Y.; Pan, P.; Xing, Y. PointNet++ Network Architecture with Individual Point Level and Global Features on Centroid for ALS Point Cloud Classification. Remote Sens. 2021, 13, 472. https://doi.org/10.3390/rs13030472
Chen Y, Liu G, Xu Y, Pan P, Xing Y. PointNet++ Network Architecture with Individual Point Level and Global Features on Centroid for ALS Point Cloud Classification. Remote Sensing. 2021; 13(3):472. https://doi.org/10.3390/rs13030472
Chicago/Turabian StyleChen, Yang, Guanlan Liu, Yaming Xu, Pai Pan, and Yin Xing. 2021. "PointNet++ Network Architecture with Individual Point Level and Global Features on Centroid for ALS Point Cloud Classification" Remote Sensing 13, no. 3: 472. https://doi.org/10.3390/rs13030472
APA StyleChen, Y., Liu, G., Xu, Y., Pan, P., & Xing, Y. (2021). PointNet++ Network Architecture with Individual Point Level and Global Features on Centroid for ALS Point Cloud Classification. Remote Sensing, 13(3), 472. https://doi.org/10.3390/rs13030472