To Blend or Not to Blend? A Framework for Nationwide Landsat–MODIS Data Selection for Crop Yield Prediction
"> Figure 1
<p>Study sites and the crop growing season (April–October) average accumulated precipitation (mm for the years 2009–2015) across the Australian wheatbelt (~53 million ha) [<a href="#B13-remotesensing-12-01653" class="html-bibr">13</a>]. The precipitation data are sourced from Jeffrey et al. [<a href="#B37-remotesensing-12-01653" class="html-bibr">37</a>].</p> "> Figure 2
<p>Box–whisker plots of 1901 to 2018 averaged (<b>a</b>) monthly accumulated precipitation (mm/month) across the Australian wheatbelt (see <a href="#remotesensing-12-01653-f001" class="html-fig">Figure 1</a>) and (<b>b</b>) monthly probability of rain days (bottom). For both parts, the horizontal line represents the median of the data, the box spans from 25th to 75th quartiles of the data, and the circles past the end of the whiskers are outliers, while the rain day threshold is 0 mm/day.</p> "> Figure 3
<p>The quantile of Landsat missing pixels in the fields for which observed yield data are available (2009 to 2015).</p> "> Figure 4
<p>Validation of C-Crop-predicted yield pooled for wheat, barley, and canola using Landsat, MODIS, and L–M blended data where the complete Landsat time series are observed (the fraction of missing Landsat series = 0). From top to bottom, the first (<b>a</b>–<b>c</b>), second (<b>d</b>–<b>f</b>), and third (<b>g</b>–<b>i</b>) rows show the comparison between observed (<span class="html-italic">x</span>-axis) and model-predicted yields (<span class="html-italic">y</span>-axis) on the field scale (<span class="html-italic">n</span> = 139), 250-m pixel level (<span class="html-italic">n</span> = 2367), and 25-m pixel level (n = 113,329), respectively, where <span class="html-italic">n</span> is the sample size. From left to right, the first (<b>a</b>,<b>d</b>,<b>g</b>), second (<b>b</b>,<b>e</b>,<b>h</b>), and third (<b>c</b>,<b>f</b>,<b>i</b>) columns delineate the validation using Landsat, MODIS, and L–M blended data, respectively. The solid black line is the line of best fit, the purple and the yellow lines represent the upper and lower bounds of the prediction confidence intervals (i.e., <span class="html-italic">p</span> = 0.01 and <span class="html-italic">p</span> = 0.05), and the black dashed line is the 1:1 line.</p> "> Figure 5
<p>Validation of C-Crop-predicted yield pooled for wheat, barley, and canola using MODIS and L–M blended data when the complete Landsat time series are not available (the fraction of missing Landsat series ≥0.083). From top to bottom, the first (<b>a</b>,<b>b</b>), second (<b>c</b>,<b>d</b>), and third (<b>e</b>,<b>f</b>) rows show the comparison between observed (<span class="html-italic">x</span>-axis) and model-predicted yields (<span class="html-italic">y</span>-axis) on the field scale (<span class="html-italic">n</span> = 210), 250-m pixel level (<span class="html-italic">n</span> = 3978), and 25-m pixel level (<span class="html-italic">n</span> = 231,667), respectively, where <span class="html-italic">n</span> is the sample size. From left to right, the first (<b>a</b>,<b>c</b>,<b>e</b>) and second (<b>b</b>,<b>d</b>,<b>f</b>) columns delineate the validation using MODIS and L–M blended data, respectively. The solid black line is the line of best fit, the purple and the yellow lines represent the upper and lower bounds of the prediction confidence intervals (i.e., <span class="html-italic">p</span> = 0.01 and <span class="html-italic">p</span> = 0.05), and the black dashed line is the 1:1 line.</p> "> Figure 6
<p>The statistical analysis of missing data in Landsat for 25-m pixel-level yield prediction, by evaluating (<b>a</b>) <span class="html-italic">R</span><sup>2</sup> and (<b>b</b>) <span class="html-italic">RMSE</span> against the fraction of Landsat missing data during the growing season. L–M blended data were used to fill the gaps (<span class="html-italic">L<sub>LM</sub></span>) in the incomplete Landsat series.</p> "> Figure 7
<p>Multi-sensor optimal data selection across the wheatbelt (2000–2018) for 25-m pixel-level crop yield prediction, using the probability of MODIS, Landsat, and <span class="html-italic">L<sub>LM</sub></span> images. Blue denotes regions where incomplete Landsat series have a fraction of missing data exceeding 42%, thus indicating where MODIS should be used for yield estimates because it provides more frequent observations than Landsat. Green areas show where adjacent Landsat orbits overlap and, thus, where a complete once every 16-day Landsat series over the whole growing season is available. Areas colored red are those where the fraction of Landsat missing data is below the 0.42 threshold identified previously in <a href="#remotesensing-12-01653-f006" class="html-fig">Figure 6</a> when L–M blended data improve the yield prediction accuracy.</p> "> Figure 8
<p>Yearly analysis of multi-sensor data selection for 25-m pixel-level crop yield prediction (2000–2018) by evaluating (<b>a</b>) the area percentage and (<b>b</b>) its correlation with the annual precipitation (mm/year). The white dashed line shows that the area percentage is 50. <span class="html-italic">µ</span>: mean of population values; <span class="html-italic">σ</span>: standard deviation; <span class="html-italic">r</span>: correlation coefficient. The symbols in (b) are labeled with the last two digits of the year.</p> "> Figure 9
<p>Scattergram for C-Crop-predicted yield against observed values for 2015 at the field level for (<b>a</b>) Western Australia (<span class="html-italic">n</span> = 63) and (<b>b</b>) eastern Australia (<span class="html-italic">n</span> = 6) wheatbelt using MODIS and L–M blended data for gap-filling Landsat (<span class="html-italic">L<sub>LM</sub></span>) when the fraction of incomplete Landsat series is below 42% for the growing season. The <span class="html-italic">RMSE</span> statistics have units of t/ha.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Satellite Images and L–M Blended Data
2.2.2. Yield Data
2.2.3. Climate Data
3. Methods
3.1. Yield Prediction
3.1.1. Net Primary Productivity
3.1.2. Gross Primary Productivity
3.2. Validation
3.3. Identification of Threshold for When to Blend
3.4. Evaluation of the Improvement in Yield Prediction Accuracy
4. Results
4.1. Yield Prediction
4.2. Identification of the Threshold
4.3. Evaluation of the Improvement in Yield Prediction Accuracy
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cohen, J.E. Human population: The next half century. Science 2003, 302, 1172–1175. [Google Scholar] [CrossRef]
- Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al. Brief history of agricultural systems modeling. Agric. Syst. 2017, 155, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Moulin, S.; Cook, P.W.; Stern, A. Crop yield assessment from remote sensing. Photogramm. Eng. Remote Sens. 2003, 69, 665–674. [Google Scholar] [CrossRef]
- Serrano, L.; Filella, I.; Penuelas, J. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop. Sci. 2000, 40, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Donohue, R.J.; Lawes, R.A.; Mata, G.; Gobbett, D.; Ouzman, J. Towards a national, remote-sensing-based model for predicting field-scale crop yield. Field Crop. Res. 2018, 227, 79–90. [Google Scholar] [CrossRef]
- Myers, E.; Kerekes, J.; Daughtry, C.; Russ, A. Assessing the Impact of Satellite Revisit Rate on Estimation of Corn Phenological Transition Timing through Shape Model Fitting. Remote Sens. 2019, 11, 2558. [Google Scholar] [CrossRef] [Green Version]
- Waldner, F.; Chen, Y.; Horan, H.; Hochan, Z. High temporal resolution of leaf area data improves empirical estimation of grain yield. Sci. Rep. Press 2019, 9, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Gitelson, A.A.; Arkebauer, T.J. Near real-time prediction of US corn yields based on time-series MODIS data. Remote Sens. Environ. 2014, 147, 219–231. [Google Scholar] [CrossRef]
- Emelyanova, I.V.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; van Dijk, A.I.J.M. Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sens. Envrion. 2013, 133, 193–209. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- ABS. Themes: Land Use on Farms, Australia, Year Ended 30 June 2017; Australian Bureau of Statistics: Canberra, Australia, 2017. Available online: http://www.abs.gov.au/ausstats/[email protected]/mf/4627.0 (accessed on 7 April 2020).
- Duveiller, G.; Baret, F.; Defourny, P. Crop specific green area index retrieval from MODIS data at regional scale by controlling pixel-target adequacy. Remote Sens. Environ. 2011, 115, 2686–2701. [Google Scholar] [CrossRef]
- Waldner, F.; Defourny, P. Where can pixel counting area estimates meet user-defined accuracy requirements? Int. J. Appl. Earth Obs. Geoinf. 2017, 60, 1–10. [Google Scholar] [CrossRef]
- Whitcraft, A.; Becker-Reshef, I.; Killough, B.; Justice, C. Meeting earth observation requirements for global agricultural monitoring: An evaluation of the revisit capabilities of current and planned moderate resolution optical earth observing missions. Remote Sens. 2015, 7, 1482–1503. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Thau, D.; Seifert, C.; Engle, E.; Little, B. A scalable satellite-based crop yield mapper. Remote Sens. Environ. 2015, 164, 324–333. [Google Scholar] [CrossRef]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kang, S.; Running, S.W.; Zhao, M.; Kimball, J.S.; Glassy, J. Improving continuity of MODIS terrestrial photosynthesis products using an interpolation scheme for cloudy pixels. Int. J. Remote Sens. 2005, 26, 1659–1676. [Google Scholar] [CrossRef]
- Poggio, L.; Gimona, A.; Brown, I. Spatio-temporal MODIS EVI gap filling under cloud cover: An example in Scotland. ISPRS J. Photogramm. Remote Sens. 2012, 72, 56–72. [Google Scholar] [CrossRef]
- Borak, J.S.; Jasinski, M.F. Effective interpolation of incomplete satellite-derived leaf-area index time series for the continental United States. Agric. For. Meteorol. 2009, 149, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Jarihani, A.; McVicar, T.; Van Niel, T.; Emelyanova, I.; Callow, J.; Johansen, K. Blending Landsat and MODIS data to generate multispectral indices: A comparison of “Index-then-Blend” and “Blend-then-Index” approaches. Remote Sens. 2014, 6, 9213–9238. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Pohl, C.; Van Genderen, J.L. Review article multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 1998, 19, 823–854. [Google Scholar] [CrossRef] [Green Version]
- Viovy, N.; Arino, O.; Belward, A. The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series. Int. J. Remote Sens. 1992, 13, 1585–1590. [Google Scholar] [CrossRef]
- Löw, F.; Biradar, C.; Dubovyk, O.; Fliemann, E.; Akramkhanov, A.; Narvaez Vallejo, A.; Waldner, F. Regional-scale monitoring of cropland intensity and productivity with multi-source satellite image time series. GIsci. Remote Sens. 2018, 55, 539–567. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Qian, B.; Zhao, T.; Jing, Q.; Geng, X.; Wang, J.; Huffman, T.; Shang, J. Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 63–74. [Google Scholar] [CrossRef]
- Meng, J.; Du, X.; Wu, B. Generation of high spatial and temporal resolution NDVI and its application in crop biomass estimation. Int. J. Digit. Earth 2013, 6, 203–218. [Google Scholar] [CrossRef]
- Wang, L.; Tian, Y.; Yao, X.; Zhu, Y.; Cao, W. Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crop. Res. 2014, 164, 178–188. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Anderson, M.C.; Gao, F.; Wardlow, B.; Hain, C.R.; Otkin, J.A.; Alfieri, J.; Yang, Y.; Sun, L.; Dulaney, W. Field-scale mapping of evaporative stress indicators of crop yield: An application over Mead, NE, USA. Remote Sens. Environ. 2018, 210, 387–402. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.; Daughtry, C.; Johnson, D. Assessing the variability of corn and soybean yields in central Iowa using high spatiotemporal resolution multi-satellite imagery. Remote Sens. 2018, 10, 1489. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Kimball, J.; Maneta, M.; Maxwell, B.; Moreno, A.; Beguería, S.; Wu, X. Regional crop gross primary productivity and yield estimation using fused landsat-MODIS data. Remote Sens. 2018, 10, 372. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Wang, J.; Dong, T.; Shang, J.; Liu, J.; Song, Y. Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybean. Sci. Total Environ. 2019, 650, 1707–1721. [Google Scholar] [CrossRef] [PubMed]
- Holper, P.N. Climate Change, Science Information Paper: Australian Rainfall—Past, Present and Future; CSIRO: Canberra, Australia, 2011. [Google Scholar]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Li, F.; Jupp, D.L.; Reddy, S.; Lymburner, L.; Mueller, N.; Tan, P.; Islam, A. An evaluation of the use of atmospheric and BRDF correction to standardize Landsat data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 257–270. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: Washington, DC, USA, 1974.
- Sibson, R. A brief description of natural neighbour interpolation. In Interpreting Multivariate Data; John Wiley & Sons: New York, NY, USA, 1981; pp. 21–36. [Google Scholar]
- Cockram, J.; Jones, H.; Leigh, F.J.; O’Sullivan, D.; Powell, W.; Laurie, D.A.; Greenland, A.J. Control of flowering time in temperate cereals: Genes, domestication, and sustainable productivity. J. Exp. Bot. 2007, 58, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Hochman, Z.; Gobbett, D.L.; Horan, H. Climate trends account for stalled wheat yields in Australia since 1990. Glob. Chang. Biol. 2017, 23, 2071–2081. [Google Scholar] [CrossRef]
- Emelyanova, I.V.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; Van Dijk, A.I.J.M. On blending Landsat-MODIS surface reflectances in two landscapes with contrasting spectral, spatial and temporal dynamics. In WIRADA Project 3.4: Technical Report; CSIRO: Water for a Healthy Country Flagship: Canberra, Australia, 2012; p. 72. Available online: https://publications.csiro.au/rpr/pub?list=SEA&pid=csiro:EP128838 (accessed on 7 April 2020).
- Bramley, R.; Williams, S. A Protocol for the Construction of Yield Maps from Data Collected Using Commercially Available Grape Yield Monitors; Cooperative Research Centre for Viticulture: Adelaide, Australia, 2001.
- Kira, T. Primary production of forests. In Photosynthesis and Productivity in Different Environments; Cambridge University Press: Cambridge, UK, 1975. [Google Scholar]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.; Levis, S.; Lucht, W.; Sykes, M.T. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- McCree, K.J. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol. 1972, 10, 443–453. [Google Scholar] [CrossRef]
- Roderick, M.L. Estimating the diffuse component from daily and monthly measurements of global radiation. Agric. For. Meteorol. 1999, 95, 169–185. [Google Scholar] [CrossRef]
- Iqbal, M. An Introduction to Solar Radiation; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Bristow, K.L.; Campbell, G.S. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteorol. 1984, 31, 159–166. [Google Scholar] [CrossRef]
- McVicar, T.R.; Jupp, D.L. Estimating one-time-of-day meteorological data from standard daily data as inputs to thermal remote sensing based energy balance models. Agric. For. Meteorol. 1999, 96, 219–238. [Google Scholar] [CrossRef]
- Wilson, J.P.; Gallant, J.C. Terrain analysis: Principles and Applications; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Verger, A.; Baret, F.; Camacho, F. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations. Remote Sens. Environ. 2011, 115, 415–426. [Google Scholar] [CrossRef]
- Li, W.; Weiss, M.; Waldner, F.; Defourny, P.; Demarez, V.; Morin, D.; Hagolle, O.; Baret, F. A generic algorithm to estimate LAI, FAPAR and FCOVER variables from SPOT4_HRVIR and Landsat sensors: Evaluation of the consistency and comparison with ground measurements. Remote Sens. 2015, 7, 15494–15516. [Google Scholar] [CrossRef] [Green Version]
- Donohue, R.J.; Hume, I.; Roderick, M.; McVicar, T.R.; Beringer, J.; Hutley, L.; Gallant, J.C.; Austin, J.; van Gorsel, E.; Cleverly, J. Evaluation of the remote-sensing-based DIFFUSE model for estimating photosynthesis of vegetation. Remote Sens. Environ. 2014, 155, 349–365. [Google Scholar] [CrossRef]
- Tambussi, E.; Nogues, S.; Ferrio, P.; Voltas, J.; Araus, J. Does higher yield potential improve barley performance in Mediterranean conditions? A case study. Field Crop. Res. 2005, 91, 149–160. [Google Scholar] [CrossRef]
- Jensen, C.; Mogensen, V.; Mortensen, G.; Andersen, M.N.; Schjoerring, J.; Thage, J.; Koribidis, J. Leaf photosynthesis and drought adaptation in field-grown oilseed rape (Brassica napus L.). Funct. Plant. Biol. 1996, 23, 631–644. [Google Scholar] [CrossRef]
- ABARES. Australian Agricultural Overview; Australian Bureau of Agricultural and Resource Economics and Sciences: Canberra, Australia, 2018; p. 26.
- Wilson, A.M.; Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 2016, 14, e1002415. [Google Scholar] [CrossRef]
- Jovanovic, B.; Collins, D.; Braganza, K.; Jakob, D.; Jones, D.A. A high-quality monthly total cloud amount dataset for Australia. Clim. Chang. 2011, 108, 485–517. [Google Scholar] [CrossRef]
- Portmann, R.W.; Solomon, S.; Hegerl, G.C. Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA 2009, 106, 7324–7329. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, F.; Milroy, S.P.; Asseng, S. Impacts of recent climate change on wheat production systems in Western Australia. Clim. Chang. 2009, 92, 495–517. [Google Scholar] [CrossRef] [Green Version]
- Dreccer, M.F.; Fainges, J.; Whish, J.; Ogbonnaya, F.C.; Sadras, V.O. Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agric. For. Meteorol. 2018, 248, 275–294. [Google Scholar] [CrossRef]
- Cai, W.; Cowan, T. Dynamics of late autumn rainfall reduction over southeastern Australia. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Van Dijk, A.I.; Beck, H.E.; Crosbie, R.S.; de Jeu, R.A.; Liu, Y.Y.; Podger, G.M.; Timbal, B.; Viney, N.R. The millennium drought in southeast Australia (2001–2009): Natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 2013, 49, 1040–1057. [Google Scholar] [CrossRef]
- Kiem, A.S.; Johnson, F.; Westra, S.; van Dijk, A.; Evans, J.P.; O’Donnell, A.; Rouillard, A.; Barr, C.; Tyler, J.; Thyer, M. Natural hazards in Australia: Droughts. Clim. Chang. 2016, 139, 37–54. [Google Scholar] [CrossRef]
- Norris, J.R.; Allen, R.J.; Evan, A.T.; Zelinka, M.D.; O’Dell, C.W.; Klein, S.A. Evidence for climate change in the satellite cloud record. Nature 2016, 536, 72. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, C.; Parry, M.L. Potential impact of climate change on world food supply. Nature 1994, 367, 133–138. [Google Scholar] [CrossRef]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Chang. 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Doraiswamy, P.; Hatfield, J.; Jackson, T.; Akhmedov, B.; Prueger, J.; Stern, A. Crop condition and yield simulations using Landsat and MODIS. Remote Sens. Environ. 2004, 92, 548–559. [Google Scholar] [CrossRef]
- Ferencz, C.; Bognar, P.; Lichtenberger, J.; Hamar, D.; Tarcsai, G.; Timar, G.; Molnar, G.; Pásztor, S.; Steinbach, P.; Szekely, B. Crop yield estimation by satellite remote sensing. Int. J. Remote Sens. 2004, 25, 4113–4149. [Google Scholar] [CrossRef]
- Chen, Y.; Donohue, R.J.; McVicar, T.R.; Waldner, F.; Mata, G.; Ota, N.; Houshmandfar, A.; Dayal, K.; Lawes, R.A. Nationwide crop yield estimation based on photosynthesis and meteorological stress indices. Agric. For. Meteorol. 2020, 284, 107872. [Google Scholar] [CrossRef]
- Kamir, E.; Waldner, F.; Hochman, Z. Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods. ISPRS J. Photogramm. Remote Sens. 2020, 160, 124–135. [Google Scholar] [CrossRef]
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Sicre, C.M.; Le Dantec, V.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Skakun, S.; Vermote, E.; Roger, J.-C.; Franch, B. Combined use of Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield assessment at regional scale. AIMS Geosci. 2017, 3, 163. [Google Scholar] [CrossRef]
- Skakun, S.; Vermote, E.; Franch, B.; Roger, J.-C.; Kussul, N.; Ju, J.; Masek, J. Winter Wheat Yield Assessment from Landsat 8 and Sentinel-2 Data: Incorporating Surface Reflectance, Through Phenological Fitting, into Regression Yield Models. Remote Sens. 2019, 11, 1768. [Google Scholar] [CrossRef] [Green Version]
- Betbeder, J.; Fieuzal, R.; Baup, F. Assimilation of LAI and dry biomass data from optical and SAR images into an agro-meteorological model to estimate soybean yield. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2540–2553. [Google Scholar] [CrossRef]
- Patel, P.; Srivastava, H.S.; Navalgund, R.R. Estimating wheat yield: An approach for estimating number of grains using cross-polarised ENVISAT-1 ASAR data. In Proceedings of the Microwave Remote Sensing of the Atmosphere and Environment V, Goa, India, 13–17 November 2006; p. 641009. [Google Scholar]
- Eitel, J.U.; Magney, T.S.; Vierling, L.A.; Brown, T.T.; Huggins, D.R. LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status. Field Crop. Res. 2014, 159, 21–32. [Google Scholar] [CrossRef]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 2016, 8, 70. [Google Scholar] [CrossRef] [Green Version]
Reference | Blending Algorithm | Remote Sensing (RS) Data | Crop Type | RS Variables (e.g., Vegetation Index (VI))/Study Period/Region/Study Area (km2) | RS-Bases Model to Estimate Crop Yields | Key Results and Accuracy |
---|---|---|---|---|---|---|
[28] | Spatial and Temporal Adaptive Vegetation Index Fusion Model (STAVIF) | MODIS and Huanjing Satellite Charge-Coupled Device (HJ-CCD) | Winter wheat | Normalized difference vegetation index (NDVI)/2008–2009/Yucheng, Shandong, China/NR | Empirical model | The estimated winter wheat biomass correlated well with observed biomass (R2 = 0.88 and MAE = 17.2 kg/ha) using the blended data. |
[29] | STARFM | Satellite for Observation of Earth (SPOT) 5 and HJ-1 CCD | Winter wheat | NDVI and ratio vegetation index (RVI) (NIR/Red)/2008–2009/(A) Rugao county, Jiangsu, and (B) Anyang county, Henan, China/(A) 0.36 km2 and (B) 0.30 km2 | Empirical model | (A) The accumulated NDVI derived from the blended data gave a higher prediction accuracy (R2 = 0.67 and RMSE = 0.36 t/ha) for wheat yield at Rugao. (B) The accumulated RVI derived from the blended data produced a higher prediction accuracy (R2 = 0.65 and RMSE = 0.36 t/ha) for wheat yield at Anyang. |
[31] | STARFM | MODIS and Landsat | Corn and soybean | Evapotranspiration (ET)/2013/Central Valley, California, the US/(A) 0.34 km2 and (B) 0.21 km2 | Empirical model | The daily ET derived from the blended data produced the RMAE of 19% with the observed ET (mm/day). The spatial pattern of cumulative ET corresponded to the measured yield. |
[27] | ESTARFM | MODIS and Landsat | Winter wheat | Green leaf area index (GLAI)/2013/Southwestern Ontario, Canada/225 km2 | Semi-empirical model | The Landsat GLAI (GLAIL) produced an R2 of 0.77 and RMSE of 2.31 t/ha; the blended GLAI (GLAIF) resulted in an R2 of 0.71 and RMSE of 1.93 t/ha; the combination of GLAIL and GLAIF led to further improvements (R2 = 0.76 and RMSE = 1.76 t/ha). |
[30] | ESTARFM | MODIS and Landsat | Corn and soybean | NDVI/2001–2014/Central Iowa, the US/200 km2 | Empirical model | A linear correlation (R2 = 0.83) between remotely sensed green-up dates and the emergence dates reported by NASA. |
[32] | STARFM | MODIS and Landsat | Maize | ET/2010–2014/Mead, NE, the US/(A) 0.49 km2, (B) 0.52 km2, and (C) 0.65 km2 | Empirical model | The county-level correlation between observed and predicted maize yields improved from 0.47 to 0.93 when aligning the ratio of actual-to-reference ET by emergence date rather than calendar date. |
[33] | STARFM | MODIS and Landsat | Corn and soybean | NDVI and enhanced vegetation index (EVI2)/2001–2015/Central Iowa, the US/200 km2 | Empirical model | Maximum EVI2 derived from L–M blended data produced the highest R2 (0.59 and 0.39) and the lowest RMAE (6.1% and 9.1%) for corn and soybeans, respectively, compared with using single data source alone. |
[34] | A pixel-wise linear regression model | MODIS and Landsat | Alfalfa, barley, maize, peas, durum wheat, spring wheat, and winter wheat | NDVI/2008–2015/Montana, the US/4.13 million ha | Semi-empirical model | A correlation of 0.96 (R2 = 0.92, relative RMSE = 37.0%, p < 0.05) resulted when comparing the yield prediction using the blended data with the reported crop production data on county level. |
[26] | ESTARFM | MODIS and Landsat | Cotton and winter wheat | NDVI/2004–2014/Fergana Valley, Uzbekistan/NR | Semi-empirical model | The R2 is 0.56 (RMSE = 0.63 t/ha) for wheat, and 0.631(RMSE = 0.48 t/ha) for cotton, respectively. |
[35] | STARFM | MODIS and Landsat | Corn and soybean | GLAI/2015/Southwestern Ontario, Canada/112 km2 | Semi-empirical model | The RMSE of yield prediction is 1.46 t/ha (R2 = 0.56) for corn and 0.86 t/ha (R2 = 0.54) for soybean using the blended data. |
This study | ESTARFM | MODIS and Landsat | Wheat, barley, and canola | NDVI/2009–2015/Australian wheatbelt/~53 million ha | Semi-empirical model | Comparing HTF, HSR data against the blended data for yield prediction at various scales. Identifying a threshold to determine when and where the blended data can improve in the nationwide yield prediction at the 25-m pixel resolution when using multiple spatio-temporal resolution images. Quantifying and evaluating the improvements in the yield prediction accuracy at various scales based on the threshold. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; McVicar, T.R.; Donohue, R.J.; Garg, N.; Waldner, F.; Ota, N.; Li, L.; Lawes, R. To Blend or Not to Blend? A Framework for Nationwide Landsat–MODIS Data Selection for Crop Yield Prediction. Remote Sens. 2020, 12, 1653. https://doi.org/10.3390/rs12101653
Chen Y, McVicar TR, Donohue RJ, Garg N, Waldner F, Ota N, Li L, Lawes R. To Blend or Not to Blend? A Framework for Nationwide Landsat–MODIS Data Selection for Crop Yield Prediction. Remote Sensing. 2020; 12(10):1653. https://doi.org/10.3390/rs12101653
Chicago/Turabian StyleChen, Yang, Tim R. McVicar, Randall J. Donohue, Nikhil Garg, François Waldner, Noboru Ota, Lingtao Li, and Roger Lawes. 2020. "To Blend or Not to Blend? A Framework for Nationwide Landsat–MODIS Data Selection for Crop Yield Prediction" Remote Sensing 12, no. 10: 1653. https://doi.org/10.3390/rs12101653
APA StyleChen, Y., McVicar, T. R., Donohue, R. J., Garg, N., Waldner, F., Ota, N., Li, L., & Lawes, R. (2020). To Blend or Not to Blend? A Framework for Nationwide Landsat–MODIS Data Selection for Crop Yield Prediction. Remote Sensing, 12(10), 1653. https://doi.org/10.3390/rs12101653