Next-Generation Gravity Missions: Sino-European Numerical Simulation Comparison Exercise
"> Figure 1
<p>Ground track pattern of Bender configuration of Scenario A (cf. <a href="#remotesensing-11-02654-t001" class="html-table">Table 1</a>). The red curve shows the 9-day near-repeat ground track pattern of the polar satellite pair, and the blue curve the ground track of the inclined pair with an inclination of 70°. The zoom-in illustrates the resulting regular spatial sampling pattern as well as the fact that the direction of the inter-satellite ranges is different.</p> "> Figure 2
<p>Scheme of a closed-loop simulation set-up. The red blocks are related to orbit design and input data generation, the blue blocks are tightly linked to the gravity parameter estimation process, while the green block refers to the comparison and validation of the resulting gravity models.</p> "> Figure 3
<p>Amplitude spectral density (ASD) of (<b>a</b>) relative distant measurement errors in terms of range-rates, and (<b>b</b>) accelerometer errors. The dark blue and red curves show the analytical noise models in accordance with Equations (1) to (3), and the light blue and green curves the corresponding noise realizations, which have been generated scaling the spectrum of normally distributed random time-series with their individual spectral model.</p> "> Figure 4
<p>Degree root mean square (RMS) of Scenarios A and B computed with the TUM simulator. The light blue and green lines show the individual 9- and 7-day solutions, respectively, and the blue and red solid lines are the average performance over the two-month period.</p> "> Figure 5
<p>Degree RMS of first 9-day period of Scenario A of the five numerical simulators: (<b>a</b>) degree RMS with respect to the input AOHIS signal; (<b>b</b>) degree RMS with respect to the TUM solution.</p> "> Figure 6
<p>(<b>a</b>) Spherical harmonic (SH) coefficients of the AOHIS model, and SH differences to the AOHIS model of the (<b>b</b>) TUM; (<b>c</b>) IGG-CAS; (<b>d</b>) Tongji; (<b>e</b>) WHU; (<b>f</b>) HUST solutions. Shown is the first 9-day period of Scenario A. Colorbar scale: log<sub>10</sub>(|…|).</p> "> Figure 7
<p>Estimated formal error standard deviations of SH coefficients of the (<b>a</b>) TUM; (<b>b</b>) IGG-CAS; (<b>c</b>) Tongji; (<b>d</b>) WHU; (<b>e</b>) HUST solutions (empirically scaled). Shown is the first 9-day period of Scenario A. Colorbar scale: log<sub>10</sub>(|…|).</p> "> Figure 8
<p>(<b>a</b>) Equivalent water heights (EWH) (cm) grid related to the input AOHIS model up to d/o 70, and EWH (cm) differences to this AOHIS model of the (<b>b</b>) TUM; (<b>c</b>) IGG-CAS; (<b>d</b>) Tongji; (<b>e</b>) WHU; (<b>f</b>) HUST solutions. Shown is the first 9-day period of Scenario A.</p> "> Figure 9
<p>(<b>a</b>) EWH (cm) grid related to the input AOHIS model up to d/o 30, and EWH (cm) differences to this AOHIS model of the (<b>b</b>) TUM; (<b>c</b>) IGG-CAS; (<b>d</b>) Tongji; (<b>e</b>) WHU; (<b>f</b>) HUST solutions. Shown is the first 9-day period of Scenario A.</p> "> Figure 10
<p>Degree RMS of co-parameterized daily gravity solutions up to d/o 15, averaged over the whole recovery period.</p> ">
Abstract
:1. Introduction
2. Closed-Loop Simulations and Input Data
3. Methods
4. Results and Discussions
5. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment experiment, mission overview and early results. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Flechtner, F.; Neumayer, K.H.; Dahle, C.; Dobslaw, H.; Fagiolini, E.; Raimondo, J.C.; Günter, A. What can be expected from the GRACE-FO Laser Ranging Interferometer for Earth Science applications? Surv. Geophys. 2016, 37, 453–470. [Google Scholar] [CrossRef]
- Drinkwater, M.R.; Floberghagen, R.; Haagmans, R.; Muzi, D.; Popescu, A. GOCE: ESA’s first Earth Explorer Core mission. In Earth Gravity Field from Space - from Sensors to Earth Science; Space Sciences Series of ISSI; Beutler, G., Drinkwater, M.R., Rummel, R., Steiger, R., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2003; Volume 18, pp. 419–432. ISBN 1-4020-1408-2. [Google Scholar]
- Pail, R.; Bingham, R.; Braitenberg, C.; Dobslaw, H.; Eicker, A.; Güntner, A.; IUGG Expert Panel. Science and user needs for observing global mass transport to understand global change and benefit society. Surv. Geophys. 2014, 36, 743–772. [Google Scholar] [CrossRef]
- Murböck, M.; Pail, R.; Daras, I.; Gruber, T. Optimal orbits for temporal gravity recovery regarding temporal aliasing. J. Geod. 2015, 88, 113–126. [Google Scholar] [CrossRef]
- Panet, I.; Flury, J.; Biancale, R.; Gruber, T.; Johannessen, J.; van den Broeke, M.R.; van Dam, T.; Gegout, P.; Hughes, C.W.; Ramillien, G.; et al. Earth System Mass Transport Mission (e.motion): A Concept for future Earth Gravity Field Measurements from Space. Surv. Geophys. 2012, 34, 141–163. [Google Scholar] [CrossRef]
- Bender, P.L.; Wiese, D.N.; Nerem, R.S. A possible Dual-GRACE mission with 90 degree and 63 degree inclination orbits. In Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies, Noordwijk, The Netherlands, 23–25 April 2008. [Google Scholar]
- Wiese, D.N.; Nerem, R.S.; Han, S.C. Expected improvements in determining continental hydrology, ice mass variations, ocean bottom pressure signals, and earthquakes using two pairs of dedicated satellites for temporal gravity recovery. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef]
- Daras, I.; Pail, R. Treatment of temporal aliasing effects in the context of next generation satellite gravimetry missions. J. Geophys. Res. 2017, 122, 7343–7362. [Google Scholar] [CrossRef]
- Gruber, T.; Panet, I.; E.motion2 Team. Proposal to ESA’s Earth Explorer Call 9: Earth System Mass Transport Mission—E.motion2. Deutsche Geodätische Kommission der Bayerischen Akademie der Wissenschaften, Reihe B, Angewandte Geodäsie, Series B. 2015. Available online: https://dgk.badw.de/fileadmin/user_upload/Files/DGK/docs/b-318.pdf (accessed on 12 November 2019).
- Pail, R.; Bamber, J.; Biancale, R.; Bingham, R.; Braitenberg, C.; Eicker, A.; Flechtner, F.; Gruber, T.; Güntner, A.; Heinzel, G.; et al. Mass variation observing system by high low inter-satellite links (MOBILE)—a new concept for sustained observation of mass transport from space. J. Geod. Sci. 2019. [Google Scholar] [CrossRef]
- Hauk, M.; Pail, R. Gravity field recovery by high-precision high-low inter-satellite links. Remote Sens. 2019, 11, 537. [Google Scholar] [CrossRef]
- NAS—National Academies of Sciences, Engineering, and Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space; The National Academies Press: Washington, DC, USA, 2018. Available online: https://essp.nasa.gov/essp/files/2018/02/2017-Earth-Science-Decadal-Survey.pdf (accessed on 12 November 2019).
- Lu, Y.; Li, H.; Yeh, H.C.; Luo, J. A self-analyzing double-loop digital controller in laser frequency stabilization for inter-satellite laser ranging. Rev. Sci. Instrum. 2015, 86, 044501. [Google Scholar] [CrossRef]
- Liang, Y.R.; Duan, H.Z.; Xiao, X.L.; Wei, B.B.; Yeh, H.C. Inter-satellite laser range-rate measurement by using digital phase locked loop. Rev. Sci. Instrum. 2015, 86, 016106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Ming, M.; Jiang, Y.Z.; Duan, H.Z.; Yeh, H.C. Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission. Rev. Sci. Instrum. 2018, 89, 064501. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quantum Gravity 2016, 33, 035010. [Google Scholar] [CrossRef]
- Mayer-Gürr, T.; Pail, R.; Gruber, T.; Fecher, T.; Rexer, M.; Schuh, W.D.; Kusche, J.; Brockmann, J.M.; Rieser, D.; Zehentner, N.; et al. The combined satellite gravity field model GOCO05s. Geophysical Research Abstracts, EGU2015-12364. In Proceedings of the European Geosciences Union General Assembly 2015, Vienna, Austria, 12–17 April 2015; Volume 17. [Google Scholar]
- Dobslaw, H.; Flechtner, F.; Bergmann-Wolf, I.; Dahle, C.; Dill, R.; Esselborn, S.; Sasgen, I.; Thomas, M. Simulating high-frequency atmosphere-ocean variability for dealiasing of satellite gravity observations: AOD1b RL05: ATMOSPHERE-OCEAN MASS VARIABILITY: AOD1b. J. Geophys. Res. Oceans 2013, 118, 3704–3711. [Google Scholar] [CrossRef]
- Savcenko, R.; Bosch, W. EOT11A—Empirical Ocean Tide Model from Multi-Mission Satellite Altimetry; Deutsches Geodätisches Forschungsinstitut (DGFI): München, Germany, 2012. [Google Scholar]
- Ray, R.D. A Global Ocean Tide Model from Topex/Poseidon Altimetry: Got99.2; Technical Report; NASA Technical Memorandum 209478; NASA: Washington, DC, USA, 1999. [Google Scholar]
- Iran Pour, S.; Reubelt, T.; Sneeuw, N.; Daras, I.; Murböck, M.; Gruber, T.; Pail, R.; Weigelt, M.; van Dam, T.; Visser, P.; et al. Assessment of Satellite Constellations for Monitoring the Variations in Earth Gravity Field—SC4MGV; ESA—ESTEC Contract No. AO/1-7317/12/NL/AF, Final Report; University of Stuttgart: Stuttgart, Germany, 2015. [Google Scholar]
- Wiese, D.N.; Visser, P.; Nerem, R.S. Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Adv. Space Res. 2011, 48, 1094–1107. [Google Scholar] [CrossRef]
- Purkhauser, A.; Pail, R. Next generation gravity missions: Near-real time gravity field retrieval strategy. Geophys. J. Int. 2019, 217. [Google Scholar] [CrossRef]
- Daras, I.; Pail, R.; Murböck, M.; Yi, W. Gravity field processing with enhanced numerical precision for LL-SST missions. J. Geod. 2015, 89, 99–110. [Google Scholar] [CrossRef]
- Daras, I. Gravity Field Processing Towards Future LL-SST Satellite Missions; DGK Series C, Dissertation No. 770; Verlag der Bayerischen Akademie der Wissenschaften: Munich, Germany, 2016; pp. 23–39. ISSN 0065-5325. [Google Scholar]
- Shampine, L.F.; Gordon, M.K. Computer Solution of Ordinary Differential Equations: The Initial Value Problem; W.H. Freeman: San Francisco, CA, USA, 1975. [Google Scholar]
- Schneider, M. Outline of a general orbit determination method. In Space Research IX, Proceedings of the Open Meetings of Working Groups (OMWG) on Physical Sciences of the 11th Plenary Meeting of the Committee on Space Research (COSPAR), Tokyo, Japan, 9–21 May 1968; Mitteilungen aus dem Institut für Astronomische und Physikalische Geodäsie, Nr. 51; Champion, K.S.W., Smith, P.A., Smith-Rose, R.L., Eds.; North Holland Publ. Company: Amsterdam, The Netherlands, 1969; pp. 37–40. [Google Scholar]
- Wang, C.; Xu, H.; Zhong, M.; Feng, W. Monthly gravity field recovery from GRACE orbits and K-band measurements using variational equations approach. Geod. Geodyn. 2015, 6, 253–260. [Google Scholar] [CrossRef]
- Berry, M.M.; Healy, L.M. Implementation of Gauss-Jackson Integration for Orbit Propagation. J. Astronaut. 2004, 52, 331–357. [Google Scholar]
- Kim, J. Simulation Study of a Low-Low Satellite-to-Satellite Tracking Mission. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2000. [Google Scholar]
- Chen, Q.; Shen, Y.; Zhang, X.; Hsu, H.; Chen, W.; Ju, X.; Lou, L. Monthly gravity field models derived from GRACE level 1b data using a modified short arc approach. J. Geophys. Res. Solid Earth 2015, 120, 1804–1819. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Chen, W.; Zhang, X.; Hsu, H. An improved GRACE monthly gravity field solution by modeling the non-conservative acceleration and attitude observation errors. J. Geod. 2016, 90, 503–523. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Francis, O.; Chen, W.; Zhang, X.; Hsu, H. Tongji-Grace02s and Tongji-Grace02k: High-precision static GRACE-only global Earth’s gravity field models derived by refined data processing strategies. J. Geophys. Res. Solid Earth 2018, 123, 6111–6137. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Chen, W.; Francis, O.; Zhang, X.; Chen, Q.; Li, W.; Chen, T. An optimized short-arc approach: Methodology and application to develop refined time series of Tongji-Grace2018 GRACE monthly solutions. J. Geophys. Res. 2019, 124, 6010–6038. [Google Scholar] [CrossRef]
- Zou, X.C.; Zhong, L.P.; Li, J.C. Simultaneous solution for precise satellite orbit and earth gravity model. Chin. J. Geophys. 2016, 59, 2413–2423. [Google Scholar]
- Xu, X.; Zhao, Y.; Reubelt, T.; Tenzer, R. A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models. Geod. Geodyn. 2017, 8, 260–272. [Google Scholar] [CrossRef]
- Reigber, C. Gravity field recovery from satellite tracking data. In Theory of Satellite Geodesy and Gravity Field Determination; Lecture Notes in Earth Sciences; Sansò, F., Rummel, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 25, pp. 197–234. [Google Scholar]
- Schuh, W.D. The processing of band-limited measurements; filtering techniques in the least squares context and in the presence of data gaps. Space Sci. Rev. 2003, 108, 67–78. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, Z.; Zhou, Z.; Li, Q.; Zhong, B.; Lu, B.; Hsu, H. Impact of different kinematic empirical parameters processing strategies on temporal gravity field model determination. J. Geophys. Res. Solid Earth 2018, 123, 252–276. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, Z.; Luo, Z. A new hybrid processing strategy to improve temporal gravity field solution. J. Geophys. Res. Solid Earth 2019, 124. [Google Scholar] [CrossRef]
- Goossens, S. Applying spectral leakage corrections to gravity field determination from satellite tracking data. Geophys. J. Int. 2010, 181, 1459–1472. [Google Scholar] [CrossRef]
- Wahr, J.; Moleneer, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
Simulation Scenario | Semi-major Axis Minus 6378 km | Inclination (°) | Cycle/Retrieval Period (days) | Start Epoch | Drift Rate (°/cycle) |
---|---|---|---|---|---|
A | ~355/~390 | 70/89 | 9 | 1 Jan 2002 | 1.5 |
B | ~355/~340 | 70/89 | 7 | 1 Jan 2002 | 1.3 |
Model | True World | Reference World |
---|---|---|
Static gravity field | GOCO05s [18] | GOCO05s |
Non-tidal time-variable gravity field | ESA AOHIS [19] | --- |
Ocean tides | EOT11a [20] | GOT4.7 [21] |
Inter-Satellite Link (ISL) noise | Equation (1) | --- |
Accelerometer (ACC) noise | Equations (2) and (3) | --- |
Star tracker (STR) noise | --- | --- |
Orbit noise | 1 cm white noise | --- |
Proc. Center | Numerical Integration Method | Gravity Retrieval Method | Max. Degree of Input Models | Max. Degree of Retrievals (Subcycle/Daily) | Co-estimated Parameters (in addition to Daily Gravity Fields) | Stochastic Model |
---|---|---|---|---|---|---|
TUM | Adams-Bashforth-Moulton (5 s) | Integral equations (short-arc; 6-h arcs) | 120 | 70/15 | Initial position and velocity (PV) per arc + boundary condition | Yes, autocovariances based on residuals |
IGG-CAS | Gauss Jackson 12 Start: Runge-Kutta-Nyström 12/10 | Dynamic method (6-h arcs) | 70 | Sc.12: 70/15 Sc.13: 65/15 | Initial PV per arc | No |
Tongji | Adams (5 s) and Kiogh-Shampine-Gordon 7 | Integral equations (short-arc; 2-h arcs) | 120 | 70/15 | Initial positions, daily polynomials of 5th order, bias and scale parameter for acceleration correction per day | Yes, full covariance based on residuals |
WHU | Adams-Bashforth-Moulton (5 s) Start: Runge-Kutta 8 | Dynamic method (1.5-h arcs) | 120 | 70/15 | Initial PV per arc | Yes, ARMA filter model based on residuals |
HUST | Gauss-Jackson 14 Start: Runge-Kutta 8 | Dynamic method (6-h arcs) | 70 | 70/15 | Initial PV per arc | No |
Model (d/o 70) | Min (cm) | Max (cm) | RMS (cm) |
---|---|---|---|
AOHIS | −50.38 | 66.84 | 5.46 |
TUM – AOHIS | −37.62 | 36.69 | 4.80 |
IGG-CAS – AOHIS | −29.62 | 30.43 | 6.36 |
Tongji – AOHIS | −31.46 | 26.71 | 3.91 |
WHU – AOHIS | −31.97 | 32.58 | 5.41 |
HUST – AOHIS | −40.68 | 29.56 | 6.11 |
Model (d/o 30) | Min (cm) | Max (cm) | RMS (cm) |
---|---|---|---|
AOHIS | −25.83 | 24.90 | 4.74 |
TUM – AOHIS | −3.63 | 5.42 | 0.98 |
IGG-CAS – AOHIS | −3.14 | 3.66 | 0.83 |
Tongji – AOHIS | −5.46 | 5.43 | 1.27 |
WHU – AOHIS | −3.76 | 4.55 | 1.01 |
HUST – AOHIS | −3.76 | 4.85 | 1.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pail, R.; Yeh, H.-C.; Feng, W.; Hauk, M.; Purkhauser, A.; Wang, C.; Zhong, M.; Shen, Y.; Chen, Q.; Luo, Z.; et al. Next-Generation Gravity Missions: Sino-European Numerical Simulation Comparison Exercise. Remote Sens. 2019, 11, 2654. https://doi.org/10.3390/rs11222654
Pail R, Yeh H-C, Feng W, Hauk M, Purkhauser A, Wang C, Zhong M, Shen Y, Chen Q, Luo Z, et al. Next-Generation Gravity Missions: Sino-European Numerical Simulation Comparison Exercise. Remote Sensing. 2019; 11(22):2654. https://doi.org/10.3390/rs11222654
Chicago/Turabian StylePail, Roland, Hsien-Chi Yeh, Wei Feng, Markus Hauk, Anna Purkhauser, Changqing Wang, Min Zhong, Yunzhong Shen, Qiujie Chen, Zhicai Luo, and et al. 2019. "Next-Generation Gravity Missions: Sino-European Numerical Simulation Comparison Exercise" Remote Sensing 11, no. 22: 2654. https://doi.org/10.3390/rs11222654
APA StylePail, R., Yeh, H. -C., Feng, W., Hauk, M., Purkhauser, A., Wang, C., Zhong, M., Shen, Y., Chen, Q., Luo, Z., Zhou, H., Liu, B., Zhao, Y., Zou, X., Xu, X., Zhong, B., Haagmans, R., & Xu, H. (2019). Next-Generation Gravity Missions: Sino-European Numerical Simulation Comparison Exercise. Remote Sensing, 11(22), 2654. https://doi.org/10.3390/rs11222654