Identify and Monitor Growth Faulting Using InSAR over Northern Greater Houston, Texas, USA
"> Figure 1
<p>Geological map of GH [<a href="#B8-remotesensing-11-01498" class="html-bibr">8</a>], where colors represent generalized lithology, and black letters (Ql—Lissie Formation; Pow—Willis Formation; Qb—Beaumont Formation; Qbs—Beaumont Formation (sand); Qbc—Beaumont Formation (clay); Qal—Alluvium; Qt—Fluviatile terrace deposits) and grey lines show distribution of the major geologic units [<a href="#B1-remotesensing-11-01498" class="html-bibr">1</a>]. Faults (marked by black lines) [<a href="#B9-remotesensing-11-01498" class="html-bibr">9</a>,<a href="#B10-remotesensing-11-01498" class="html-bibr">10</a>], hydrocarbon wells (small grey dots [<a href="#B11-remotesensing-11-01498" class="html-bibr">11</a>]), GPS benchmarks (green triangles), salt dome positions (green polygons) and county boundaries (white dashed lines, county names are labeled by purple letters) are superimposed. The blue and black rectangles show coverage of two neighboring Advanced Land Observing (ALOS) data. The Texas State district is shown as an inset map on the upper-right corner.</p> "> Figure 2
<p>SAR interferograms spatial-temporal baseline distributions: (<b>a</b>) shows PS-InSAR (single master) interferograms of both two tracks: blue segments indicate 11 interferograms generated by ALOS path 175, with 20071227 as the master image; black segments represent 10 interferograms generated by ALOS path 176, with 20100605 as the master image; (<b>b</b>,<b>c</b>) SBAS (multiple master) interferograms with temporal and perpendicular baseline thresholds of 350 days and 1200 m, respectively.</p> "> Figure 3
<p>(<b>a</b>) Annual line-of-sight (LOS) deformation map derived from ALOS datasets, which shows a mosaic of two ALOS tracks 175 and 176. The negative values represent ground surface movement away from the satellite. The pink box in (<b>a</b>) indicates our main study area used for the discussion of InSAR results in Figure 5; the dark red lines are profiles across the active faults (labeled as P#P#’). (<b>b</b>)Vertical displacement difference derived from path 175 and 176 by assuming the observed InSAR deformation is vertical; the corresponding statistical histogram of (<b>b</b>) is an inset on the upper-right corner.</p> "> Figure 4
<p>Annual (<b>a</b>,<b>b</b>) and time-series (<b>c</b>) subsidence result from interferometric synthetic aperture radar (InSAR) along three profiles whose positions are shown on <a href="#remotesensing-11-01498-f003" class="html-fig">Figure 3</a> as P#P#’. Dark yellow lines show the corresponding surface height. The rough sketch of some integrated faults’ geometry is shown at the bottom of (<b>b</b>). Green polygon in (<b>a</b>) shows approximate location of Tomball salt dome, whose underground depth is not clear. Dash lines represent fault locations.</p> "> Figure 5
<p>Enlarged deformation maps over northwestern Houston, whose location is outlined by pink dashed rectangles in <a href="#remotesensing-11-01498-f003" class="html-fig">Figure 3</a>, from two adjacent ALOS-1 paths: (<b>a</b>) Path 176; (<b>b</b>) Path 175; (<b>c</b>,<b>d</b>) Both Path 175 and Path 176. The white arrows in (<b>a</b>) and (<b>b</b>) represent zones of high deformation velocity gradient (differential movement). White lines represent the faults mapped by LiDAR [<a href="#B10-remotesensing-11-01498" class="html-bibr">10</a>] and pink dashed lines show the faults published by Norman and Elsbury (1991), while newly revealed fractures by our Multi-temporal InSAR (MTI) processing are in black lines. The purple boxes in (<b>c</b>) indicate the three discovered faults systems, while the middle one (the same as the bottom purple box in (<b>d</b>)) is also used for InSAR results validation in <a href="#remotesensing-11-01498-f006" class="html-fig">Figure 6</a>b. The top purple box in (<b>d</b>) shows an area that will be used for fault activity model analysis in <a href="#sec5-remotesensing-11-01498" class="html-sec">Section 5</a>. The colored stars in (<b>c</b>) and (<b>d</b>) mark positions for field survey and validation in <a href="#remotesensing-11-01498-f006" class="html-fig">Figure 6</a>a,c–g.</p> "> Figure 6
<p>(<b>a</b>) Enlarged deformation map of Hockley fault, whose location is shown as a pink star in <a href="#remotesensing-11-01498-f005" class="html-fig">Figure 5</a>d. (<b>b</b>) Enlarged deformation map around Big Barn Fault System, whose location is outlined by the large purple dashed rectangle in <a href="#remotesensing-11-01498-f005" class="html-fig">Figure 5</a>d. Scarp positions are from FCI and TWEI, and the faults they mapped are based on the scarp locations in the field. (<b>c</b>,<b>d</b>) show the enlarged deformation maps of Part 1 and Part 2 (labeled on (<b>b</b>)) of Big Barn faults, respectively, and the pink lines and numbers display six of the seven field sites of geophysical survey conducted in [<a href="#B37-remotesensing-11-01498" class="html-bibr">37</a>] (the other site is beyond the scope of (<b>b</b>)). White lines represent the faults mapped by LiDAR [<a href="#B28-remotesensing-11-01498" class="html-bibr">28</a>], while newly revealed fractures by our MTI processing are in black lines. (<b>e</b>–<b>g</b>) show the photos taken in the field investigation, whose locations are marked as colored stars in (<b>b</b>) and in <a href="#remotesensing-11-01498-f005" class="html-fig">Figure 5</a>c (green star for (<b>e</b>), light blue star for (<b>f</b>) and blue star for (<b>g</b>)).</p> "> Figure 7
<p>Comparison between InSAR-mapped time-series ground surface displacement and GPS observations at 6 stations.</p> "> Figure 8
<p>Observed (<b>a</b> and <b>d</b>), modeled (<b>b</b> and <b>e</b>), and residual (<b>c</b> and <b>f</b>) average vertical deformation maps of the two independent tracks (i.e., 176 and 175) of InSAR data. The black line shows the location of the fault. (<b>g</b> and <b>h</b>) show slip rate distribution maps of fault F1 and F2, respectively.</p> "> Figure 9
<p>InSAR-observed deformation rate from 2007 to 2011 and the contoured groundwater elevation change at Jasper aquifer for the period 2000–2011 [<a href="#B104-remotesensing-11-01498" class="html-bibr">104</a>]. Black triangles show location of groundwater wells in Jasper aquifer that were used to derive the water level change counters.</p> ">
Abstract
:1. Introduction
2. Geologic Background and Hydrologic Setting
3. InSAR Datasets and Processing
4. InSAR Results and Analysis
4.1. InSAR-Derived Annual Deformation Rate
4.2. Fault Traces Identification by InSAR Deformation
4.3. Validation of InSAR-Mapped Faults
4.4. Rate, Extent, and Temporal Evolution of Growth Faulting
5. Modeling Faulting Parameters
6. Discussion About the Causes of Fault Movement over GH
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chowdhury, A.H.; Turco, M.J. Geology of the gulf coast aquifer, Texas. In Aquifers of the Gulf Coast of Texas; Robert, E.M., Sarah, C.D., Edward, S., Angle, A., William, F., Mullican, I., Eds.; Volume Report 365; Texas Water Development Board: Austin, TX, USA, 2006; pp. 23–50. [Google Scholar]
- Campbell, M.D.; David, M.C.; Wise, H.M.; Richard, B. Growth Faulting and Subsidence in the Houston, Texas Area: Guide to the Origins, Relationships, Hazards, Potential Impacts and Methods of Investigation; Institute of Environmental Technology: Houston, TX, USA, 2015; p. 107. [Google Scholar]
- Campbell, M.D.; David, M.C.; Wise, H.M. Growth faulting and subsidence in the Houston, Texas area: Guide to the origins, relationships, hazards, potential impacts and methods of investigation: An update. J. Geol. Geosci. 2018, 2, 1–53. [Google Scholar]
- Verbeek, E.R.; Clanton, U.S. Historically Active Faults in the Houston Metropolitan Area, Texas; Houston Geological Society: Houston, TX, USA, 1981; pp. 28–69. [Google Scholar]
- Engelkemeir, R.; Khan, S. Near-surface geophysical studies of Houston faults. Lead. Edge 2007, 26, 1004–1008. [Google Scholar] [CrossRef]
- Verbeek, E.R.; Ratzlaff, K.W.; Clanton, U.S. Faults in Parts of North-Central and Western Houston Metropolitan Area, Texas; US Geological Survey Miscellaneous Field Studies Map, MF-1136; US Geological Survey: Reston, VA, USA, 1979.
- Clanton, U.S.; Verbeek, E.R. Photographic portrait of active faults in the Houston metropolitan area, Texas. In Houston Area Environmental Geology: Surface Faulting, Ground Subsidence; Etter, E.M., Ed.; Hazard Liability; Houston Geological Society: Houston, TX, USA, 1981; pp. 70–113. [Google Scholar]
- Stoeser, D.B.; Green, G.N.; Morath, L.C.; Heran, W.D.; Wilson, A.B.; Moore, D.W.; Gosen, B. Preliminary Integrated Geologic Map Databases for the United States: Central States: Montana, Wyoming, Colorado, New Mexico, North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, Texas, Iowa, Missouri, Arkansas, and Louisiana; US Geological Survey Open-File Report 1351; US Geological Survey: Reston, VA, USA, 2005.
- Khan, S.D. Surface Deformation in the Northern Gulf of Mexico. Available online: http://www.uh.edu/~sdkhan/research_deformation_gom.html (accessed on 24 June 2014).
- Khan, S.D.; Huang, Z.; Karacay, A. Study of ground subsidence in northwest harris county using gps, lidar, and insar techniques. Nat. Hazards 2014, 73, 1143–1173. [Google Scholar] [CrossRef]
- Drillinginfo. Available online: http://info.drillinginfo.com/ (accessed on 24 June 2019).
- Sheets, M.M. Active surface faulting in the Houston area, Texas 1971. Houst. Geol. Soc. Bull. 1971, 13, 24–33. [Google Scholar]
- Verbeek, E.R.; Clanton, U.S. Map Showing Faults in the Southeastern Houston Metropolitan Area, Texas; U.S. Geological Survey Open File Report 78-79; US Geological Survey: Reston, VA, USA, 1978.
- Paine, J.G. Subsidence of the Texas coast: Inferences from historical and late pleistocene sea levels. Tectonophysics 1993, 222, 445–458. [Google Scholar] [CrossRef]
- Pratt, W.E.; Johnson, D.W. Local subsidence of the Goose Creek oil field. J. Geol. 1926, 34, 577–590. [Google Scholar] [CrossRef]
- Gabrysch, R.K.; Holzer, T.L. Discussion of “fault control of subsidence, Houston, Texas” by Charles W. Kreitler, May–June 1977 issue, v. 15, no. 3, pp. 203–214. Groundwater 1978, 16, 51–55. [Google Scholar] [CrossRef]
- Verbeek, E.R. Surface faults in the gulf coastal plain between victoria and beaumont, Texas. Tectonophysics 1979, 52, 373–375. [Google Scholar] [CrossRef]
- Clanton, U.S.; Amsbury, D.L. Active faults in southeastern Harris County, Texas. Environ. Geol. 1975, 1, 149–154. [Google Scholar] [CrossRef]
- O’Neill, M.; Van Siclen, D. Activation of gulf coast faults by depressuring of aquifers and an engineering approach to siting structures along their traces. Bull. Assoc. Eng. Geol. 1984, 21, 73–87. [Google Scholar]
- Holzer, T.L. Ground failure induced by ground-water withdrawal from unconsolidated sediment. Rev. Eng. Geol. 1984, 6, 67–105. [Google Scholar]
- Galloway, D.L.; Bawden, G.W.; Leake, S.A.; Honegger, D.G. Land subsidence hazards. In Landslide and Land Subsidence Hazards to Pipelines; Baum, R.L., Galloway, D.L., Harp, E.L., Eds.; Volume Open-File Report 2008-1164; Geological Survey (US): Reston, VA, USA, 2008. [Google Scholar]
- Galloway, D.L.; Burbey, T.J. Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Saribudak, M. Geophysical mapping of hockley fault in NW Houston: A few surprising results. Houst. Geol. Soc. Bull. 2010, 54, 43–57. [Google Scholar]
- Saribudak, M. Geophysical mapping of the hockley growth fault in northwest Houston, USA, and recent surface observations. Lead. Edge 2011, 30, 172–180. [Google Scholar] [CrossRef]
- Saribudak, M. 2d resistivity imaging investigation of long point, katy-hockley, tomball, and pearland faults, Houston, Texas. Houst. Geol. Soc. Bull. 2012, 54, 39–48. [Google Scholar]
- Buckley, S.M.; Rosen, P.A.; Hensley, S.; Tapley, B.D. Land subsidence in Houston, Texas, measured by radar interferometry and constrained by extensometers. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Engelkemeir, R.M.; Khan, S.D. Lidar mapping of faults in Houston, Texas, USA. Geosphere 2008, 4, 170–182. [Google Scholar] [CrossRef]
- Khan, S.D.; Stewart, R.R.; Otoum, M.; Chang, L. A geophysical investigation of the active hockley fault system near Houston, Texas. Geophysics 2013, 78, B177–B185. [Google Scholar] [CrossRef]
- Kreitler, C.W. Fault control of subsidence, Houston, Texas a. Groundwater 1977, 15, 203–214. [Google Scholar] [CrossRef]
- Everett, J.R.; Reid, W.M. Active faults in the Houston, Texas area as observed on landsat imagery. In Houston Area Environmental Geology: Surface Faulting, Ground Subsidence, and Hazard Liability; Etter, E.M., Ed.; Houston Geological Society: Houston, TX, USA, 1981; pp. 13–27. [Google Scholar]
- Fugro Consultants, I. Geologic Fault Delineation Study SJRA Distribution Lines-Route w1 San Jacinto River Authority Montgomery County, TX; Report No. 04.12110014-9; Fugro Consultants, Inc.: Sacramento, CA, USA, 2012. [Google Scholar]
- Tolunay-Wong Engineers, Inc. Surface Fault Exploration Project: The Woodlands, TX; Project No. 13.13.132; Tolunay-Wong Engineers, Inc.: The Woodlands, TX, USA, 2014. [Google Scholar]
- Elsbury, B.R.; Van Siclen, D.C.; Marshall, B.P. Engineering Aspects of the Houston Fault Problem; McClelland engineers: Houston, TX, USA, 1980; p. 40. [Google Scholar]
- Han, X. Integrated Remote Sensing and Geophysical Study of the Hockley Fault in Harris and Montgomery Counties, Texas. PhD Thesis, University of Houston, Houston, TX, USA, 2013. [Google Scholar]
- Saribudak, M.; Van Nieuwenhuise, B. Integrated geophysical studies over an active growth fault in Houston. Lead. Edge 2006, 25, 332–334. [Google Scholar] [CrossRef]
- Saribudak, M.; Ruder, M.; Van Nieuwenhuise, B. Hockley fault revisited: More geophysical data and new evidence on the fault location, Houston, Texasgeophysics of the hockley fault, Texas. Geophysics 2018, 83, B133–B142. [Google Scholar] [CrossRef]
- Minteer, D. A Geophysical Delineation of a Normal Fault within the Gulf Coastal Plain, Montgomery County, Texas. Master’s Thesis, Stephen F. Austin State University, Nacogdoches, TX, USA, 2018. [Google Scholar]
- Wang, G.; Soler, T. Using opus for measuring vertical displacements in Houston, Texas. J. Surv. Eng. 2013, 139, 126–134. [Google Scholar] [CrossRef]
- Wang, G.; Turco, M.; Soler, T.; Kearns, T.J.; Welch, J. Comparisons of opus and ppp solutions for subsidence monitoring in the greater Houston area. J. Surv. Eng. 2017, 143, 05017005. [Google Scholar] [CrossRef]
- Wang, G.; Welch, J.; Kearns, T.; Yang, L.; Serna, J., Jr. Introduction to gps geodetic infrastructure for land subsidence monitoring in Houston, Texas, USA. Proc. Int. Assoc. Hydrol. Sci. 2015, 372, 297–303. [Google Scholar] [CrossRef]
- Wang, G.; Yu, J.; Kearns, T.J.; Ortega, J. Assessing the accuracy of long-term subsidence derived from borehole extensometer data using gps observations: Case study in Houston, Texas. J. Surv. Eng. 2014, 140, 05014001. [Google Scholar] [CrossRef]
- Wang, G.; Yu, J.; Ortega, J.; Saenz, G.; Burrough, T.; Neill, R. A stable reference frame for the study of ground deformation in the Houston metropolitan area, Texas. J. Geod. Sci. 2013, 3, 188–202. [Google Scholar] [CrossRef]
- Yu, J.; Wang, G.; Kearns, T.J.; Yang, L. Is there deep-seated subsidence in the Houston-galveston area? Int. J. Geophys. 2014, 2014. [Google Scholar] [CrossRef]
- Kearns, T.J.; Wang, G.; Turco, M.; Welch, J.; Tsibanos, V.; Liu, H. Houston16: A stable geodetic reference frame for subsidence and faulting study in the Houston metropolitan area, Texas, US. Geod. Geodyn. 2018. [Google Scholar] [CrossRef]
- Van Siclen, D.C. The Houston Fault Problem. In Proceedings of the Third Annual Convention; American Institute of Professional Geologists: Newark, NJ, USA, 1967; p. Texas Section. [Google Scholar]
- Horswell, C. More Homeowners Join Fault Line Suit in the Woodlands. Available online: https://www.Houstonchronicle.com/news/Houston-Texas/Houston/article/More-homeowners-join-fault-line-suit-in-The-4969043.php (accessed on 10 November 2013).
- Staff, W. Update: Seven Homes Allegedly Built on Fault Line in the Woodlands. Available online: https://www.woodlandsonline.com/npps/story.cfm?nppage=49849 (accessed on 12 March 2013).
- Lu, Z.; Danskin, W.R. Insar analysis of natural recharge to define structure of a ground-water basin, San Bernardino, California. Geophys. Res. Lett. 2001, 28, 2661–2664. [Google Scholar] [CrossRef]
- Wright, T.; Parsons, B.; Fielding, E. Measurement of interseismic strain accumulation across the north anatolian fault by satellite radar interferometry. Geophys. Res. Lett. 2001, 28, 2117–2120. [Google Scholar] [CrossRef]
- Fialko, Y. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature 2006, 441, 968–971. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.; Zhu, J.; Ren, X.; Ding, X. Inferring three-dimensional surface displacement field by combining sar interferometric phase and amplitude information of ascending and descending orbits. Sci. China Earth Sci. 2010, 53, 550–560. [Google Scholar] [CrossRef]
- Qu, F.; Zhang, Q.; Lu, Z.; Zhao, C.; Yang, C.; Zhang, J. Land subsidence and ground fissures in xi’an, china 2005–2012 revealed by multi-band insar time-series analysis. Remote Sens. Environ. 2014, 155, 366–376. [Google Scholar] [CrossRef]
- Qu, F.; Lu, Z.; Zhang, Q.; Bawden, G.W.; Kim, J.-W.; Zhao, C.; Qu, W. Mapping ground deformation over Houston–galveston, Texas using multi-temporal insar. Remote Sens. Environ. 2015, 169, 290–306. [Google Scholar] [CrossRef]
- Fialko, Y.; Simons, M.; Agnew, D. The complete (3-d) surface displacement field in the epicentral area of the 1999 mw7. 1 hector mine earthquake, California, from space geodetic observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.; England, P.C.; Fielding, E.J. Insar observations of low slip rates on the major faults of western Tibet. Science 2004, 305, 236–239. [Google Scholar] [CrossRef]
- Fattahi, H.; Amelung, F. Insar observations of strain accumulation and fault creep along the chaman fault system, pakistan and afghanistan. Geophys. Res. Lett. 2016, 43, 8399–8406. [Google Scholar] [CrossRef]
- Shirzaei, M.; Bürgmann, R. Time-dependent model of creep on the hayward fault from joint inversion of 18 years of insar and surface creep data. J. Geophys. Res. Solid Earth 2013, 118, 1733–1746. [Google Scholar] [CrossRef]
- Bacques, G.; Michele, M.; Raucoules, D.; Aochi, H.; Rolandone, F. Shallow deformation of the san andreas fault 5 years following the 2004 parkfield earthquake (mw6) combining ers2 and envisat insar. Sci. Rep. 2018, 8, 6032. [Google Scholar] [CrossRef]
- Khoshmanesh, M.; Shirzaei, M.; Nadeau, R. Time-dependent model of aseismic slip on the central san andreas fault from insar time series and repeating earthquakes. J. Geophys. Res. Solid Earth 2015, 120, 6658–6679. [Google Scholar] [CrossRef]
- Stork, S.V.; Sneed, M. Houston-Galveston Bay Area, Texas, from Space—A New Tool for Mapping Land Subsidence; U.S. Geological Survey Fact Sheet 110-02; U.S. Geological Survey: Reston, VA, USA, 2002; p. 6.
- Bawden, G.W.; Johnson, M.R.; Kasmarek, M.C.; Brandt, J.; Middleton, C.S. Investigation of Land Subsidence in the Houston-Galveston Region of Texas by Using the Global Positioning System and Interferometric Synthetic Aperture Radar, 1993–2000; 2328-0328; US Geological Survey Scientific Investigations Report 2012-5211; U.S. Geological Survey: Reston, VA, USA, 2012; p. 88.
- Baker, E. Stratigraphic and Hydrogeologic Framework of Part of the Coastal Plain of Texas; Texas Department of Water Resources: Austin, TX, USA, 1979; Volume 236, p. 18.
- Ashworth, J.B. Aquifers of Texas; Texas Water Development Board: Austin, TX, USA, 1995; Volume Report 345.
- Baker, E., Jr. Hydrology of the Jasper Aquifer in the Southeast Texas Coastal Plain; Texas Department of Water Resources: Austin, TX, USA, 1986; Volume 295, p. 18.
- Kasmarek, M.C.; Johnson, M.R.; Ramage, J.K. Water-Level Altitudes 2012, and Water-Level Changes in the Chicot, Evangeline, and Jasper Aquifers and Compaction 1973–2011 in the Chicot and Evangeline Aquifers, Houston-Galveston Region, Texas; 1411334515; US Department of the Interior, US Geological Survey Scientific Investigations Map 3230; U.S. Geological Survey: Reston, VA, USA, 2012; p. 17.
- Bay, G.; Houston, L. Groundwater withdrawals 1976, 1990, and 2000-10 and Land-Surface-Elevation Changes 2000-10 in Harris, Galveston, Fort Bend, Montgomery, and Brazoria Counties, Texas; U.S. Geological Survey Scientific Investigations Map 3230; U.S. Geological Survey: Reston, VA, USA, 2013; p. 18.
- Gabrysch, R.; Naftel, W.; Mcadoo, G.; Bonnet, C. Ground-Water Data for Harris County, TEXAS: Volume II—Records of Wells, 1892–1972; Texas Water Development Board Report 178; Texas Water Development Board: Austin, TX, USA, 1974; p. 181.
- Kasmarek, M.C.; Johnson, M.R.; Ramage, J.K. Water-Level Altitudes 2010 and Water-Level Changes in the Chicot, Evangeline, and Jasper Aquifers and Compaction 1973–2009 in the Chicot and Evangeline Aquifers, Houston-Galveston Region, Texas; U.S. Geological Survey Scientific Investigations Map 3138, U.S. Geological Survey: Reston, VA, USA, 2010; p. 17. [Google Scholar]
- Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of Las Vegas: Insar reveals structural control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483–486. [Google Scholar] [CrossRef]
- Bawden, G.W.; Thatcher, W.; Stein, R.S.; Hudnut, K.W.; Peltzer, G. Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature 2001, 412, 812. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in sar interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential sar interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using insar persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal insar method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, L16302. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.A. Phase unwrapping in three dimensions with application to insar time series. JOSA A 2007, 24, 2737–2747. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the landers earthquake mapped by radar interferometry. Nature 1993, 364, 138. [Google Scholar] [CrossRef]
- Kampes, B.M.; Hanssen, R.F.; Perski, Z. Radar Interferometry with Public Domain Tools. In Proceedings of the FRINGE 2003 Workshop, Frascati, Italy, 1–5 December 2003. [Google Scholar]
- Bekaert, D.; Hooper, A.; Wright, T. A spatially variable power law tropospheric correction technique for insar data. J. Geophys. Res. Solid Earth 2015, 120, 1345–1356. [Google Scholar] [CrossRef]
- Norman, C.E.; Elsbury, W. Active faults in the north Harris County and south central Montgomery County, Texas. In Environmental and Engineering Geology of North Harris and South Montgomery Counties Texas-Guidebook; Houston Geological Society: Houston, TX, USA, 1991; Volume 19, pp. 13–27. [Google Scholar]
- Otoum, M.A. An Integrated Geophysical Investigation to Map the Hockley Active Fault in Northwest Harris County, Texas. Ph.D. Thesis, University of Houston, Houston, TX, USA, 2011. [Google Scholar]
- Dominguez, C. Fault Line-Damaged Conroe Water Park to Open for One Last Summer. Available online: https://www.yourconroenews.com/neighborhood/moco/news/article/Fault-line-damaged-Conroe-water-park-to-open-for-12867961.php#photo-15460502 (accessed on 26 April 2018).
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar]
- Wang, L.; Wang, R.; Roth, F.; Enescu, B.; Hainzl, S.; Ergintav, S. Afterslip and viscoelastic relaxation following the 1999 m 7.4 izmit earthquake from gps measurements. Geophys. J. Int. 2009, 178, 1220–1237. [Google Scholar] [CrossRef]
- Wang, R.; Parolai, S.; Ge, M.; Jin, M.; Walter, T.R.; Zschau, J. The 2011 Mw 9.0 Tohoku earthquake: Comparison of gps and strong-motion data. Bull. Seismol. Soc. Am. 2013, 103, 1336–1347. [Google Scholar] [CrossRef]
- Wang, R.; Schurr, B.; Milkereit, C.; Shao, Z.; Jin, M. An improved automatic scheme for empirical baseline correction of digital strong-motion records. Bull. Seismol. Soc. Am. 2011, 101, 2029–2044. [Google Scholar] [CrossRef]
- Segall, P.; Harris, R. Earthquake deformation cycle on the San Andreas fault near parkfield, california. J. Geophys. Res. Solid Earth 1987, 92, 10511–10525. [Google Scholar] [CrossRef]
- Kasmarek, M.C.; Strom, E.W. Hydrogeology and Simulation of Groundwater Flow and Land-Surface Subsidence in the Chicot and Evangeline Aquifers, Houston Area, Texas. Austin, Texas: Us Geological Survey; U.S. Geological Survey Water-Resources Investigation Report 02-4022; U.S. Geological Survey: Reston, VA, USA, 2002; p. 61.
- Heltz, J.O. Evidence of Neotectonic Activity in Southwest Louisiana. Master’s Thesis, Louisiana State University, Baton Rouge, LA, USA, 2005. [Google Scholar]
- Worrall, D.M.; Snelson, S. Evolution of the northern gulf of Mexico, with emphasis on cenozoic growth faulting and the role of salt. In The Geology of North America—An Overview; Bally, A.W., Palmer, A.R., Eds.; The Geological Society of America: Boulder, CO, USA, 1989; Volume A. [Google Scholar]
- U.S. Geological Survey. Hillendahl Quadrangle; 1915; Scale 1:24000. Available online: https://catalog.data.gov/dataset/usgs-1-24000-scale-quadrangle-for-hillendahl-tx-1915929b6 (accessed on 4 February 2014).
- Goings, R.E.; Smosna, R. A regional subsurface study of the expanded yegua formation in the Houston diapir province. Gulf Coast Assoc. Geol. Soc. Trans. 1994, 44, 245–254. [Google Scholar]
- Gabrysch, R.; Coplin, L. Land-Surface Subsidence Resulting from ground-Water withdrawals in the Houston-Galveston Region, Texas, through 1987; U.S. Geological Survey Scientific Investigations Report 90-01; U.S. Geological Survey: Reston, VA, USA, 1990; pp. 1–53.
- Ewing, T.E. Growth faults and salt tectonics in the Houston diapir province--relative timing and exploration significance. In Proceedings of the Transactions of the 33nd Annual Meeting of the Gulf Coast Association of Geological Societies, San Antonio, TX, USA, 24 October 1983; pp. 83–90. [Google Scholar]
- Shelton, J.W. Listric normal faults: An illustrated summary. AAPG Bull. 1984, 68, 801–815. [Google Scholar]
- Schultz-Ela, D.D.; Jackson, M.P.; Vendeville, B.C. Mechanics of active salt diapirism. Tectonophysics 1993, 228, 275–312. [Google Scholar] [CrossRef]
- Huffman, A.C., Jr.; Kinney, S.A.; Biewick, L.; Mitchell, H.R.; Gunther, G.L. Gulf Coast Geology (gcg) Online—Miocene of Southern Louisiana; U.S. Geological Survey, Central Energy Resources Team: Denver, CO, USA, 2004.
- Jackson, M.; Vendeville, B. Regional extension as a geologic trigger for diapirism. Geol. Soc. Am. Bull. 1994, 106, 57–73. [Google Scholar] [CrossRef]
- Jorgensen, D.G. Analog-Model Studies of Ground-Water Hydrology in the Houston District, Texas; 2331-1258; US Geological Survey Texas Water Devel. Board Rept. 190; Texas Water Development Board: Austin, TX, USA, 1974; p. 84.
- Coplin, L.S.; Galloway, D. Houston-galveston, Texas-managing coastal subsidence. Land Subsid. U. S. US Geol. Surv. Circ. 1999, 1182, 35–48. [Google Scholar]
- Reid, W.M. Active faults in Houston, Texas. PhD. Thesis, University of Texas at Austin, Austin, TX, UAS, 1973. [Google Scholar]
- Morton, R.A. An Overview of Coastal Land Loss: With Emphasis on the Southeastern United States; U.S. Geological Survey Open File Report 03-337; U.S. Geological Survey: Center for Coastal and Watershed Studies: St. Petersburg, FL, USA, 2003; p. 24.
- Kasmarek, M.C.; Johnson, M.R. Groundwater withdrawals 1976, 1990, and 2000-10 and Land-Surface-Elevation Changes 2000-10 in Harris, Galveston, Fort Bend, Montgomery, and Brazoria Counties, TEXAS; U.S. Department of the Interior; U.S. Geological Survey Scientific Investigations Report 2013-5034; U.S. Geological Survey: Reston, VA, USA, 2013.
- Johnson, M.R.; Ramage, J.K.; Kasmarek, M.C. Water-level Altitudes 2011, and Water-level Changes in the Chicot, Evangeline, and Jasper Aquifers and Compaction 1973-2010, in the Chicot and Evangeline Aquifers, Houston-Galveston Region, Texas; US Department of the Interior, US Geological Survey Scientific Investigations Map 3174; U.S. Geological Survey: Reston, VA, USA, 2011; p. 17, 16 sheets.
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, F.; Lu, Z.; Kim, J.-W.; Zheng, W. Identify and Monitor Growth Faulting Using InSAR over Northern Greater Houston, Texas, USA. Remote Sens. 2019, 11, 1498. https://doi.org/10.3390/rs11121498
Qu F, Lu Z, Kim J-W, Zheng W. Identify and Monitor Growth Faulting Using InSAR over Northern Greater Houston, Texas, USA. Remote Sensing. 2019; 11(12):1498. https://doi.org/10.3390/rs11121498
Chicago/Turabian StyleQu, Feifei, Zhong Lu, Jin-Woo Kim, and Weiyu Zheng. 2019. "Identify and Monitor Growth Faulting Using InSAR over Northern Greater Houston, Texas, USA" Remote Sensing 11, no. 12: 1498. https://doi.org/10.3390/rs11121498
APA StyleQu, F., Lu, Z., Kim, J. -W., & Zheng, W. (2019). Identify and Monitor Growth Faulting Using InSAR over Northern Greater Houston, Texas, USA. Remote Sensing, 11(12), 1498. https://doi.org/10.3390/rs11121498