Changes in Water Surface Area during 1989–2017 in the Huai River Basin using Landsat Data and Google Earth Engine
<p>(<b>a</b>) Geographical location of the Huai River Basin; (<b>b</b>) Digital elevation model (DEM); (<b>c</b>) Average precipitation from 1989 to 2017; (<b>d</b>) Average temperature from 1989 to 2017.</p> "> Figure 2
<p>The numbers distribution of Landsat 5, 7, 8 images in Huai River Basin from 1989 to 2017: (<b>a</b>) The total numbers of Landsat observation; (<b>b</b>) the total number of high-quality Landsat images; (<b>c</b>) the total number of Landsat images in each path/row (tiles); (<b>d</b>) the total number images of different Landsat sensors; (<b>e</b>) Cumulative percentage of pixels with good observations of 0, 1, 2, 3, 4, [5,10), [10,20), [20,40), [40,80), [80,160), respectively during 1989–2017.</p> "> Figure 3
<p>A flowchart of the overall route of open surface water mapping using Landsat 5, 7, and 8 images and Google Earth Engine (GEE).</p> "> Figure 4
<p>Visually interpreted water and non-water pixels.</p> "> Figure 5
<p>The water frequency distribution in Huai River Basin: Water frequency distribution map of 2017 (<b>a</b>) and 1989–2017 (<b>b</b>); The number of pixel distributions of water at different frequency levels with a bin of 0.05 in 2017 (<b>c</b>) and 1984–2015 (<b>d</b>); The number of pixel distributions of water at different frequency levels with a bin of 0.1 during 1989–2017 (<b>e</b>).</p> "> Figure 6
<p>The water area distribution in the Huai River Basin from 1989 to 2017: (<b>a</b>) The maximum water body; (<b>b</b>) the average water body; (<b>c</b>) the year-long water body; (<b>d</b>) seasonally changing water body.</p> "> Figure 7
<p>The inter-annual variations of water body numbers across the Huai River Basin from 1989 to 2017: The numbers of maximum water body (<b>a</b>) and year-long water body (<b>b</b>).</p> "> Figure 8
<p>The numbers and area distribution of the maximum surface water body at different size levels during 1989-2017; (<b>a</b>) the number distribution of maximum surface water, (<b>b</b>) the area distribution of maximum surface water.</p> "> Figure 9
<p>Changes in annual total precipitation, total evapotranspiration, and the average temperature in the Huai River Basin during 1987–2017.</p> "> Figure 10
<p>The distribution and area distribution based on the water body range in 2001 and 2003: (<b>a</b>) The water body number distribution; (<b>b</b>) the water body size distribution.</p> "> Figure 11
<p>A comparison between the water map generated in this study (MAX (<b>a2</b>–<b>e2</b>) denotes the maximum water body, and YEAR-LONG (<b>a4</b>–<b>e4</b>) denotes the year-long water body) and JRC-data (JRC-All represents the sum of the annual seasonal surface water and permanent surface water (<b>a1</b>–<b>e1</b>), and JRC-PW represents permanent surface water of the JRC-data (<b>a3</b>–<b>e3</b>). Lakes (<b>a</b>), rivers (<b>b</b>), ponds (<b>c</b>), mountain waters (<b>d</b>) and urban water bodies (<b>e</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.2.1. Landsat5 TM, 7 ETM+, 8 OLI Data
2.2.2. Sentinel-2 Multispectral Instruments (MSI) Images, Globeland30, and Climate Data
2.3. Data Processing
2.3.1. Waterbody Area Extraction Algorithm
2.3.2. Variation Analysis
2.4. Accuracy Assessment
3. Results and Analysis
3.1. Accuracy Assessment of Single-Temporal Surface Water Map
3.2. Spatial Distribution of Surface Water in the Huai River Basin
3.3. Trends of Surface Water Area Variations in Huai River Basin from 1989 to 2017
3.4. Relationship Between the Climatic Factors and Huai River Basin’s Water
3.5. Changes of Surface Water in Wet and Dry Years
4. Discussion
4.1. Comparison with JRC-Data
4.2. Impacts of Climate Change and Human Activities on the Temporal and Spatial Patterns of Surface Water Bodies
4.3. Uncertainties of this Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amprako, J.L. The United Nations World Water Development Report 2015: Water for a Sustainable World. Future Food J. Food Agric. Soc. 2016, 4, 64–65. [Google Scholar]
- Hall, J.W.; Grey, D.; Garrick, D.; Fung, F.; Brown, C.; Dadson, S.J.; Sadoff, C.W. Coping with the curse of freshwater variability. Science 2014, 346, 429–430. [Google Scholar] [CrossRef] [PubMed]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Shilong, P.; Philippe, C.; Yao, H.; Zehao, S.; Shushi, P.; Junsheng, L.; Liping, Z.; Hongyan, L.; Yuecun, M.; Yihui, D.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar]
- Qi, H.; Altinakar, M.S. Simulation-based decision support system for flood damage assessment under uncertainty using remote sensing and census block information. Nat. Hazards 2011, 59, 1125–1143. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, C.; Xu, K.; Watanabe, M. Flood disaster monitoring and evaluation in China. Glob. Environ. Chang. Part B Environ. Hazards 2002, 4, 33–43. [Google Scholar] [CrossRef]
- Barton, I.J.; Bathols, J.M. Monitoring floods with AVHRR. Remote Sens. Environ. 1989, 30, 89–94. [Google Scholar] [CrossRef]
- Carroll, M.; Wooten, M.; DiMiceli, C.; Sohlberg, R.; Kelly, M. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991–2011. Remote Sens. 2016, 8. [Google Scholar] [CrossRef]
- Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic-spectral classification algorithm. Int. J. Digit. Earth 2016, 9, 113–133. [Google Scholar] [CrossRef]
- Li, S.; Sun, D.; Goldberg, M.; Stefanidis, A. Derivation of 30-m-resolution water maps from TERRA/MODIS and SRTM. Remote Sens. Environ. 2013, 134, 417–430. [Google Scholar] [CrossRef]
- Liao, A.; Chen, L.; Chen, J.; He, C.; Cao, X.; Chen, J.; Peng, S.; Sun, F.; Gong, P. High-resolution remote sensing mapping of global land water. Sci. China Earth Sci. 2014, 57, 2305–2316. [Google Scholar] [CrossRef]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; Mcintyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Song, C.; Wang, J.; Lyons, E.A.; Knox, B.R.; Cox, J.S.; Feng, G. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sens. Environ. 2016, 185, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Zhao, W.; Li, A.; Bian, J.; Zhang, Z. Subpixel Inundation Mapping Using Landsat-8 OLI and UAV Data for a Wetland Region on the Zoige Plateau, China. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Dai, Y.; Trigg, M.A.; Ikeshima, D. Development of a global—90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar]
- Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Hambright, K.D. Continued decrease of open surface water body area in Oklahoma during 1984–2015. Sci. Total Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM plus and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Smith, M.; Adams, J.; Gillespie, A. Reference endmembers for spectral mixture analysis. In Proceedings of the 5th Australasian Remote Sensing Conference, Perth, Australia, 8–12 October 1990; pp. 331–340. [Google Scholar]
- Henits, L.; Jürgens, C.; Mucsi, L. Seasonal multitemporal land-cover classification and change detection analysis of Bochum, Germany, using multitemporal Landsat TM data. Int. J. Remote Sens. 2016, 37, 16. [Google Scholar] [CrossRef]
- Evora, N.D.; Tapsoba, D.; De Seve, D. Combining artificial neural network models, geostatistics, and passive microwave data for snow water equivalent retrieval and mapping. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1925–1939. [Google Scholar] [CrossRef]
- Li, E.; Du, P.; Samat, A.; Xia, J.; Che, M. An automatic approach for urban land-cover classification from Landsat-8 OLI data. Int. J. Remote Sens. 2015, 36, 5983–6007. [Google Scholar] [CrossRef]
- Rundquist, D.C.; Lawson, M.P.; Queen, L.P.; Cerveny, R.S. The Relationship between Summer-Season Rainfall Events and Lake-Surface Area1. JAWRA J. Am. Water Resour. Assoc. 1987, 23, 493–508. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Mcfeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Menarguez, M.A.; Zhang, G.; Qin, Y.; Thau, D.; Biradar, C.; Moore, B., III. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine. Remote Sens. Environ. 2016, 185, 142–154. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xiao, X.; Zou, Z.; Chen, B.; Ma, J.; Dong, J.; Doughty, R.B.; Zhong, Q.; Qin, Y.; Dai, S.; et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 2018, 110987. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Li, R. Satellite observations make it possible to estimate Poyang Lake's water budget. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the Conterminous United States—Representing a Decade of Land Cover Change Information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar] [CrossRef]
- Liu, H.; Yin, Y.; Piao, S.; Zhao, F.; Engels, M.; Ciais, P. Disappearing Lakes in Semiarid Northern China: Drivers and Environmental Impact. Environ. Sci. Technol. 2013, 47, 12107–12114. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the free and open Landsat data policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Jie, W.; Wang, X.; Liu, C.; Peng, G.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Ye, H.; Ma, J.; Doughty, R.; Li, X.; Zhao, B.; Wu, Z.; Sun, R.; Dong, J.; et al. Mapping Forest and Their Spatial-Temporal Changes From 2007 to 2015 in Tropical Hainan Island by Integrating ALOS/ALOS-2 L-Band SAR and Landsat Optical Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 852–867. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Wang, C.; Jia, M.; Chen, N.; Wang, W. Long-Term Surface Water Dynamics Analysis Based on Landsat Imagery and the Google Earth Engine Platform: A Case Study in the Middle Yangtze River Basin. Remote Sens. 2018, 10, 1635. [Google Scholar] [CrossRef]
- Gao, C.; Chen, S.; Zhai, J.; Zhang, Z.; Liu, Q. On threshold of drought and flood disasters in Huaihe River basin. Adv. Water Sci. 2014, 25, 36–44. [Google Scholar]
- Gao, C.; Zhang, Z.; Zhai, J.; Qing, L.; Yao, M. Research on meteorological thresholds of drought and flood disaster: A case study in the Huai River Basin, China. Stoch. Environ. Res. Risk Assess. 2015, 29, 157–167. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, S.; Qin, X.; Na, Z.; Liang, L. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Chen, J.; Ban, Y.; Li, S. China: Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar]
- Rodell, M.; Houser, P.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Lei, J.I.; Zhang, L.I.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar]
- Verpoorter, C.; Kutser, T.; Tranvik, L. Automated Mapping of Water Bodies Using Landsat Multispectral Data. Limnol. Oceanogr. Methods 2015, 10, 1037–1050. [Google Scholar] [CrossRef]
- Santoro, M.; Wegmueller, U.; Lamarche, C.; Bontemps, S.; Defoumy, P.; Arino, O. Strengths and weaknesses of multi-year Envisat ASAR backscatter measurements to map permanent open water bodies at global scale. Remote Sens. Environ. 2015, 171, 185–201. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ma, J.; Xiao, X.; Wang, X.; Dai, S.; Zhao, B. Long-Term Dynamic of Poyang Lake Surface Water: A Mapping Work Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 313. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and Econometrics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 345–381. [Google Scholar]
- Bates, B.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J. Climate Change and Water: Technical Paper VI. Environ. Policy Collect. 2008, 128, 343–355. [Google Scholar]
- Gao, C.; Ruan, T. The influence of climate change and human activities on runoff in the middle reaches of the Huaihe River Basin, China. J. Geogr. Sci. 2018, 28, 79–92. [Google Scholar] [CrossRef]
- Mo, X.; Hu, S.; Lu, H.; Lin, Z.; Liu, S. Drought Trends over the Terrestrial China in the 21st Century in Climate Change Scenarios with Ensemble GCM Projections. J. Nat. Resour. 2018, 33, 1244–1256. [Google Scholar]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Rokni, K.; Musa, T.A.; Hazini, S.; Ahmad, A.; Solaimani, K. Investigating the application of pixel-level and product-level image fusion approaches for monitoring surface water changes. Nat. Hazards 2015, 78, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Jakimow, B.; Griffiths, P.; Linden, S.V.D.; Hostert, P. Mapping pasture management in the Brazilian Amazon from dense Landsat time series. Remote Sens. Environ. 2017, 205, 453–468. [Google Scholar] [CrossRef]
- Tang, Z.; Ou, W.; Yue, D.; Yu, X. Extraction of Water Body Based on LandSat TM5 Imagery—A Case Study in the Yangtze River. IFIP Adv. Inf. Commun. Technol. 2012, 393, 416–420. [Google Scholar]
Sentinel-2 MSI | ||||
---|---|---|---|---|
Waterbody Map (2017) | Water | No-Water | Sum of Classified Pixels | User Accuracy (%) |
Water | 813 | 34 | 847 | 95.99% |
No-Water | 94 | 1059 | 1153 | 91.85% |
Sum of reference pixels | 907 | 1093 | OA = 93.6% | |
Producer accuracy (%) | 89.64% | 96.89% | Kappa = 0.87 |
Precipitation | Evapotranspiration | Temperature | ||||
---|---|---|---|---|---|---|
Waterbody Type | r | p-Value | r | p-Value | r | p-Value |
Maximum | 0.60 * | 0.02 | −0.15 | 1.00 | −0.24 | 1.00 |
Minimum | 0.47 | 0.20 | 0.07 | 1.00 | 0.03 | 1.00 |
Seasonal | 0.33 | 1.00 | −0.34 | 1.00 | −0.43 | 0.37 |
Average | 0.56 * | 0.03 | −0.03 | 1.00 | −0.11 | 1.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, H.; Zhao, J.; Qin, Y.; Yang, J.; Cui, Y.; Song, H.; Ma, L.; Jin, N.; Meng, Q. Changes in Water Surface Area during 1989–2017 in the Huai River Basin using Landsat Data and Google Earth Engine. Remote Sens. 2019, 11, 1824. https://doi.org/10.3390/rs11151824
Xia H, Zhao J, Qin Y, Yang J, Cui Y, Song H, Ma L, Jin N, Meng Q. Changes in Water Surface Area during 1989–2017 in the Huai River Basin using Landsat Data and Google Earth Engine. Remote Sensing. 2019; 11(15):1824. https://doi.org/10.3390/rs11151824
Chicago/Turabian StyleXia, Haoming, Jinyu Zhao, Yaochen Qin, Jia Yang, Yaoping Cui, Hongquan Song, Liqun Ma, Ning Jin, and Qingmin Meng. 2019. "Changes in Water Surface Area during 1989–2017 in the Huai River Basin using Landsat Data and Google Earth Engine" Remote Sensing 11, no. 15: 1824. https://doi.org/10.3390/rs11151824
APA StyleXia, H., Zhao, J., Qin, Y., Yang, J., Cui, Y., Song, H., Ma, L., Jin, N., & Meng, Q. (2019). Changes in Water Surface Area during 1989–2017 in the Huai River Basin using Landsat Data and Google Earth Engine. Remote Sensing, 11(15), 1824. https://doi.org/10.3390/rs11151824