GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning Aided Method: Performance and Validation
"> Figure 1
<p>Bistatic radar geometry.</p> "> Figure 2
<p>The flowchart of global navigation satellite system-reflectometry (GNSS-R) soil moisture retrieval procedure.</p> "> Figure 3
<p>The flowchart of XGBoost algorithm.</p> "> Figure 4
<p>Three-dimensional data set shown for the XGBoost algorithm.</p> "> Figure 5
<p>Two-dimensional data set (<b>a</b>) for the SNR and the permittivity (<math display="inline"><semantics> <mi>θ</mi> </semantics></math> = 84°), two dimensional data (<b>b</b>) set for the elevation angle and the permittivity (<math display="inline"><semantics> <mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> </mrow> </semantics></math> = 20 dB).</p> "> Figure 6
<p>Variable importance sensitivity to <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>s</mi> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>t</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> </mrow> </semantics></math> 500 (<b>a</b>) and 4000 (<b>b</b>) when <math display="inline"><semantics> <mi>n</mi> </semantics></math> = 2000 and 5000.</p> "> Figure 7
<p>Variable importance sensitivity to <math display="inline"><semantics> <mrow> <mi>c</mi> <mi>o</mi> <mi>l</mi> <mo>-</mo> <mi>s</mi> <mi>a</mi> <mi>m</mi> <mi>p</mi> <mi>l</mi> <mi>e</mi> <mo>-</mo> <mi>t</mi> <mi>r</mi> <mi>e</mi> <mi>e</mi> </mrow> </semantics></math> 0.5 (<b>a</b>) and 0.6 (<b>b</b>) for <math display="inline"><semantics> <mi>n</mi> </semantics></math> = 2000 and 5000.</p> "> Figure 8
<p>Variable importance sensitivity to different types of soils, Grugliasco (<b>a</b>) and Agliano (<b>b</b>), when <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>s</mi> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>t</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> </mrow> </semantics></math> = 2000, <math display="inline"><semantics> <mi>n</mi> </semantics></math> = 5000, <math display="inline"><semantics> <mrow> <mi>c</mi> <mi>o</mi> <mi>l</mi> <mo>-</mo> <mi>s</mi> <mi>a</mi> <mi>m</mi> <mi>p</mi> <mi>l</mi> <mi>e</mi> <mo>-</mo> <mi>t</mi> <mi>r</mi> <mi>e</mi> <mi>e</mi> </mrow> </semantics></math> = 0.5 and 0.6.</p> "> Figure 9
<p>Two ground-based setups in Grugliasco (<b>left</b> panel) and Agliano (<b>right</b> panel).</p> "> Figure 10
<p>Precipitations in Grugliasco and Agliano during January to March 2016.</p> "> Figure 11
<p>Tektronix Metallic Cable Tester 1502 for time-domain reflectometry (TDR) measurements.</p> "> Figure 12
<p>The skyplot with bar and equipment position, specular points mapped on the x–y plane with Fresnel zones and antenna footprint, (<b>a</b>) 27 January 2016, (<b>b</b>) 5 February 2016, (<b>c</b>) 3 March 2016, and (<b>d</b>) 7 March 2016.</p> "> Figure 12 Cont.
<p>The skyplot with bar and equipment position, specular points mapped on the x–y plane with Fresnel zones and antenna footprint, (<b>a</b>) 27 January 2016, (<b>b</b>) 5 February 2016, (<b>c</b>) 3 March 2016, and (<b>d</b>) 7 March 2016.</p> "> Figure 13
<p>The results of TDR and GNSS-R soil moisture (SM) retrieval, with time series, (<b>a</b>) 27 January 2016, (<b>b</b>) 5 February 2016, (<b>c</b>) 3 March 2016, and (<b>d</b>) 7 March 2016.</p> "> Figure 14
<p>The variation rate of GNSS-R permittivity for Grugliasco (<b>a</b>) and Agliano (<b>b</b>) measurement from dry to wet case.</p> "> Figure 15
<p>The variation rate of GNSS-R SMC for Grugliasco (<b>a</b>) and Agliano (<b>b</b>) measurement from dry to wet case.</p> "> Figure 16
<p>Variable importance sensitivity to <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>s</mi> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>t</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> </mrow> </semantics></math> 500 (<b>a</b>) and 4000 (<b>b</b>) when <math display="inline"><semantics> <mi>n</mi> </semantics></math> = 2000 and 5000.</p> "> Figure 17
<p>Variable importance sensitivity to <math display="inline"><semantics> <mrow> <mi>t</mi> <mi>e</mi> <mi>s</mi> <mi>t</mi> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> </mrow> </semantics></math> 0.5 (<b>a</b>) and 0.6 (<b>b</b>), <math display="inline"><semantics> <mi>n</mi> </semantics></math> = 2000 and 5000.</p> "> Figure 18
<p>Variable importance sensitivity to different types of soils, Grugliasco (<b>a</b>) and Agliano (<b>b</b>), when <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>s</mi> <mi>t</mi> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>t</mi> <mi>o</mi> <mi>r</mi> <mi>s</mi> </mrow> </semantics></math> = 4000, <math display="inline"><semantics> <mi>n</mi> </semantics></math> = 5000, <math display="inline"><semantics> <mrow> <mi>t</mi> <mi>e</mi> <mi>s</mi> <mi>t</mi> <mi>s</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> </mrow> </semantics></math> = 0.5 and 0.6.</p> ">
Abstract
:1. Introduction
2. Theory and Methods
2.1. The Bistatic GNSS-R Soil Moisture Retrieval Method
2.2. XGboost
- (1)
- Using the second-order Taylor expression to approximate the objective function, making it easier to find the optimal solution;
- (2)
- It can handle sparse and missing data;
- (3)
- Generating a decision tree using the structural score;
- (4)
- The split node uses the candidate set so that the algorithm runs fast;
- (5)
- Define the complexity of the tree and apply it to the objective function to grasp the complexity of the model;
- (6)
- Over-fitting can be prevented by samplings of column features.
2.3. XGboost for the Variable Importance Assessment
3. Results and Analysis
3.1. GNSS-R Soil Moisture Retrieval Data Set
- , Elevation data (from 35 degrees to 85 degrees);
- , Receiver Gain (from 2.5 to 3.5 dB);
- , the signal to noise ratio from the reflected channel (from 2 to 26 dB);
- , the total noise power of the receiver (from −130 to −150 dB).
3.2. Sensitivity to the Number of Estimators and Samples
3.3. Sensitivity to the Number of Col-Sample-Tree and Samples
3.4. Sensitivity to Different Types of Soil Compositions
3.5. Ground-Truth Experiment Data for Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zavorotny, V.U.; Gleason, S.; Cardellach, E.; Camps, A. Tutorial on remote sensing using GNSS bistatic radar of opportunity. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–45. [Google Scholar] [CrossRef]
- Darrozes, J.; Roussel, N.; Zribi, M. The reflected global navigation satellite system (GNSS-R): From theory to practice. Microw. Remote Sens. Land Surf. 2016, 303–355. [Google Scholar] [CrossRef]
- Darrozes, J.; Roussel, N.; Zribi, M. Observation of Continental Surfaces by Remote Sensing; Baghdadi, N., Zribi, M., Eds.; ISTE Ltd.: London, UK, 2016. [Google Scholar]
- Hall, C.; Cordey, R. Multistatic scatterometry. In Proceedings of the International Geoscience and Remote Sensing Symposium, ‘Remote Sensing: Moving Toward the 21st Century’ IEEE, Edinburgh, Scotland, UK, 13–16 September 1988; pp. 561–562. [Google Scholar]
- Martin-Neira, M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J. 1993, 17, 331–355. [Google Scholar]
- Clarizia, M.P.; Ruf, C.; Cipollini, P.; Zuffada, C. First spaceborne observation of sea surface height using GPS-reflectometry. Geophys. Res. Lett. 2016, 43, 767–774. [Google Scholar] [CrossRef]
- Garrison, J.L.; Katzberg, S.J.; Hill, M.I. Effect of sea roughness on bistatically scattered range coded signals from the global positioning system. Geophys. Res. Lett. 1998, 25, 2257–2260. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Rius, A.; Ribó, S.; Martín-Neira, M. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals. Geophys. Res. Lett. 2017, 44, 8369–8376. [Google Scholar] [CrossRef]
- Gleason, S. Space-based GNSS scatterometry: Ocean wind sensing using an empirically calibrated model. IEEE Trans. Geosci. Remote Sens. 2016, 51, 4853–4863. [Google Scholar] [CrossRef]
- Alonso-Arroyo, A.; Camps, A.; Park, H.; Pascual, D.; Onrubia, R.; Martín, F. Retrieval of significant wave height and mean sea surface level using the GNSS-R interference pattern technique: Results from a three-month field campaign. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3198–3209. [Google Scholar] [CrossRef]
- Foti, G.; Gommenginger, C.; Jales, P.; Unwin, M.; Shaw, A.; Robertson, C.; Rosello, J. Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission. Geophys. Res. Lett. 2015, 42, 5435–5441. [Google Scholar] [CrossRef] [Green Version]
- Masters, D.; Axelrad, P.; Katzberg, S. Initial results of land-reflected GPS bistatic radar measurements in SMEX02. Remote Sens. Environ. 2004, 92, 507–520. [Google Scholar] [CrossRef]
- Ban, W.; Yu, K.; Zhang, X. GEO-satellite-based reflectometry for soil moisture estimation: Signal modeling and algorithm development. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1829–1838. [Google Scholar] [CrossRef]
- Gleason, S. Towards sea ice remote sensing with space detected GPS signals: Demonstration of technical feasibility and initial consistency check using low resolution sea ice information. Remote Sens. 2010, 2, 2017–2039. [Google Scholar] [CrossRef]
- Jin, S.; Qian, X.; Kutoglu, H. Snow depth variations estimated from GPS-Reflectometry: A case study in Alaska from L2P SNR data. Remote Sens. 2016, 8, 63. [Google Scholar] [CrossRef]
- Yan, Q.; Huang, W. Tsunami detection and parameter estimation from GNSS-R delay-Doppler map. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4650–4659. [Google Scholar] [CrossRef]
- Small, E.; Larson, K.M.; Braun, J. Sensing vegetation growth with reflected GPS signals. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Chew, C.; Reager, J.T.; Small, E. CYGNSS data map flood inundation during the 2017 Atlantic hurricane season. Sci. Rep. 2018, 8, 9336. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, S.V.; Zuffada, C.; Shah, R.; Chew, C.; Lowe, S.T.; Mannucci, A.J.; Cardellach, E.; Brakenridge, G.R.; Geller, G.; Rosenqvist, A. Wetland monitoring with global navigation satellite system reflectometry. Earth Space Sci. 2017, 4, 16–39. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cardellach, E.; Fabra, F.; Ribó, S.; Rius, A. Lake level and surface topography measured with spaceborne GNSS-reflectometry from CYGNSS mission: Example for the lake Qinghai. Geophys. Res. Lett. 2018, 45, 13–332. [Google Scholar] [CrossRef]
- Egido, A.; Caparrini, M.; Ruffini, G.; Paloscia, S.; Santi, E.; Guerriero, L.; Pierdicca, N.; Floury, N. Global navigation satellite systems reflectometry as a remote sensing tool for agriculture. Remote Sens. 2012, 4, 2356–2372. [Google Scholar] [CrossRef]
- Cardellach, E.; Ruffini, G.; Pino, D.; Rius, A.; Komjathy, A.; Garrison, J.L. Mediterranean balloon experiment: Ocean wind speed sensing from the stratosphere, using GPS reflections. Remote Sens. Environ. 2003, 88, 351–362. [Google Scholar] [CrossRef]
- Ruf, C.S.; Atlas, R.; Chang, P.S.; Clarizia, M.P.; Garrison, J.L.; Gleason, S.; Katzberg, S.J.; Jelenak, Z.; Johnson, J.T.; Majumdar, S.J. New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Am. Meteorol. Soc. 2016, 97, 385–395. [Google Scholar] [CrossRef]
- Katzberg, S.J.; Torres, O.; Grant, M.S.; Masters, D. Utilizing calibrated GPS reflected signals to estimate soil reflectivity and dielectric constant: Results from SMEX02. Remote Sens. Environ. 2006, 100, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Aguasca, A.; Vall-Llossera, M.; Valencia, E.; Ramos-Perez, I.; Park, H. Review of crop growth and soil moisture monitoring from a ground-based instrument implementing the interference pattern GNSS-R technique. Radio Sci. 2011, 46. [Google Scholar] [CrossRef]
- Roussel, N.; Frappart, F.; Ramillien, G.; Darrozes, J.; Baup, F.; Lestarquit, L.; Ha, M.C. Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2 to 70. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 4781–4794. [Google Scholar] [CrossRef]
- Zhang, B.; Teunissen, P.J.; Yuan, Y. On the short-term temporal variations of GNSS receiver differential phase biases. J. Geod. 2017, 91, 563–572. [Google Scholar] [CrossRef]
- Che, D.; Yuan, F.; Shieh, W. 200-Gb/s polarization-multiplexed DMT using stokes vector receiver with frequency-domain MIMO. In Proceedings of the 2017 optical fiber communications conference and exhibition (OFC), Los Angeles, CA, USA, 19–23 March 2017; pp. 1–3. [Google Scholar]
- Larson, K.M.; Braun, J.J.; Small, E.E.; Zavorotny, V.U.; Gutmann, E.D.; Bilich, A.L. GPS multipath and its relation to near-surface soil moisture content. J. Sel. Top. Appl. Earth Observ. Remote Sens. 2010, 3, 91–99. [Google Scholar] [CrossRef]
- Vu, P.L.; Ha, M.C.; Frappart, F.; Darrozes, J.; Ramillien, G.; Dufrechou, G.; Gegout, P.; Morichon, D.; Bonneton, P. Identifying 2010 Xynthia storm signature in GNSS-R-based tide records. Remote Sens. 2019, 11, 782. [Google Scholar] [CrossRef]
- Jin, S.; Komjathy, A. GNSS reflectometry and remote sensing: New objectives and results. Adv. Space Res. 2010, 46, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Gleason, S. Detecting bistatically reflected GPS signals from low earth orbit over land surfaces. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July 2006; pp. 3086–3089. [Google Scholar]
- Jales, P.; Unwin, M. Mission Description-GNSS Reflectometry on TDS-1 With the SGR-ReSI; Tech. Rep. SSTL; Surrey Satellite Technolgy Ltd.: Guildford, UK, 2015. [Google Scholar]
- Chew, C.; Shah, R.; Zuffada, C.; Hajj, G.; Masters, D.; Mannucci, A.J. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission. Geophys. Res. Lett. 2016, 43, 3317–3324. [Google Scholar] [CrossRef]
- Camps, A.; Park, H.; Portal, G.; Rossato, L. Sensitivity of TDS-1 GNSS-R reflectivity to soil moisture: Global and regional differences and impact of different spatial scales. Remote Sens. 2018, 10, 1856. [Google Scholar] [CrossRef]
- Carreno-Luengo, H.; Luzi, G.; Crosetto, M. Sensitivity of CyGNSS bistatic reflectivity and SMAP microwave radiometry brightness temperature to geophysical parameters over land surfaces. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 12, 107–122. [Google Scholar] [CrossRef]
- Carreno-Luengo, H.; Luzi, G.; Crosetto, M. Impact of the elevation angle on CYGNSS GNSS-R bistatic reflectivity as a function of effective surface roughness over land surfaces. Remote Sens. 2018, 10, 1749. [Google Scholar] [CrossRef]
- Chew, C.C.; Small, E.E. Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture. Geophys. Res. Lett. 2018, 45, 4049–4057. [Google Scholar] [CrossRef]
- Guerriero, L.; Pierdicca, N.; Egido, A.; Caparrini, M.; Paloscia, S.; Santi, E.; Floury, N. Modeling of the GNSS-R signal as a function of soil moisture and 11 vegetation biomass. Int. Geosci. Remote Sens. Symp. 2013, 4050–4053. [Google Scholar] [CrossRef]
- Wu, X.; Jin, S. GNSS-Reflectometry: Forest canopies polarization scattering 13 properties and modeling. Adv. Space Res. 2014, 54, 863–870. [Google Scholar] [CrossRef]
- Pierdicca, N.; Guerriero, L.; Giusto, R.; Brogioni, M.; Egido, A. SAVERS: A 15 simulator of GNSS reflections from bare and vegetated soils. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6542–6554. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Torlay, L.; Perrone-Bertolotti, M.; Thomas, E.; Baciu, M. Machine learning-XGBoost analysis of language networks to classify patients with epilepsy. Brain Inform. 2017, 4, 159–169. [Google Scholar] [CrossRef]
- Zheng, H.; Yuan, J.; Chen, L. Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation. Energies 2017, 10, 1168. [Google Scholar] [CrossRef]
- Fan, J.; Wang, X.; Wu, L.; Zhou, H.; Zhang, F.; Yu, X.; Lu, X.; Xiang, Y. Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Convers. Manag. 2018, 164, 102–111. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Zhang, D.; Qian, L.; Mao, B.; Huang, C.; Huang, B.; Si, Y. A data-driven design for fault detection of wind turbines using random forests and xgboost. IEEE Access. 2018, 6, 21020–21031. [Google Scholar] [CrossRef]
- Beckmann, P.; Spizzichino, A. The Scattering of Electromagnetic Waves from Rough Surfaces; Artech House, Inc.: Norwood, MA, USA, 1987; 511p. [Google Scholar]
- Stutzman, W. Polarization in Electromagnetic Systems; Artech House: London, UK, 1993. [Google Scholar]
- Zavorotny, V.U.; Voronovich, A.G. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef] [Green Version]
- Behari, J. Microwave Dielectric Behaviour of Wet Soils; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Hong, S.; Shin, I. A physically-based inversion algorithm for retrieving soil moisture in passive microwave remote sensing. J. Hydrol. 2011, 405, 24–30. [Google Scholar] [CrossRef]
- Jia, Y.; Savi, P.; Canone, D.; Notarpietro, R. Estimation of surface characteristics using GNSS LH-reflected signals: Land versus water. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4752–4758. [Google Scholar] [CrossRef]
- Wang, J.R.; Schmugge, T.J. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sens. 1980, 4, 288–295. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, 1, 35–46. [Google Scholar] [CrossRef]
- Hallikainen, M.T.; Ulaby, F.T.; Dobson, M.C.; El-Rayes, M.A.; Wu, L. Microwave dielectric behavior of wet soil-part 1: Empirical models and experimental observations. IEEE Trans. Geosci. Remote Sens. 1985, 1, 25–34. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, F.; Cheng, Y.; Gu, X.; Liu, W. XGBoost Classifier for DDoS Attack Detection and Analysis in SDN-based Cloud. In Proceedings of the IEEE International Conference on Big Data and Smart Computing, Shanghai, China, 15–17 January 2018. [Google Scholar]
- Sun, J.; Wang, S.; Du, J. Research on Classification Model of Equipment Support Personnel Based on Collaborative Filtering and xgboost Algorithm. In Proceedings of the IEEE International Conference on Computer Systems, Electronics and Control, Dalian, China, 25–27 December 2017. [Google Scholar]
- Soil Survey Laboratory Staff. Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report no. 42, Version 2.0; USDA-SCS U.S. Government Printing Office: Washington, DC, USA, 1992.
- Greco, R. Soil water content inverse profiling from single TDR waveforms. J. Hydrol. 2006, 317, 325–339. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Savi, P.; Maio, I.A.; Ferraris, S. The role of probe attenuation in the time-domain reflectometry characterization of dielectrics. Electromagnetics 2010, 30, 554–564. [Google Scholar] [CrossRef]
- Colorado Center for Astrodynamics Research. Denver, CO, USA. Available online: http://ccar.colorado.edu/gnss/ (accessed on 30 June 2016).
- Navigation Satellite System Group, Politecnico di Torino, Torino, TO, Italy. Available online: http://www.det.polito.it/research/research_areas/ (accessed on 11 July 2019).
- Baudena, M.; Bevilacqua, I.; Canone, D.; Ferraris, S.; Previati, M.; Provenzale, A. Soil water dynamics at a midlatitude test site: Field measurements and box modeling approaches. J. Hydrol. 2012, 414, 329–340. [Google Scholar] [CrossRef]
- Tan, K.; Ma, W.; Wu, F.; Du, Q. Random forest–based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data. Environ. Monit. Assess. 2019, 191, 446. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fernández, N.J.; Aires, F.; Richaume, P.; Kerr, Y.H.; Prigent, C.; Kolassa, J.; Cabot, F.; Jimenez, C.; Mahmoodi, A.; Drusch, M. Soil moisture retrieval using neural networks: Application to SMOS. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5991–6007. [Google Scholar] [CrossRef]
Coarse Sand (%) | Fine Sand (%) | Very Fine Sand (%) | Coarse Silt (%) | Fine Silt (%) | Clay (%) | Organic Matter (%) |
---|---|---|---|---|---|---|
15.5 | 50.1 | 16.1 | 5.3 | 8.2 | 4.8 | 1.4 |
Coarse Sand (%) | Fine Sand (%) | Coarse Silt (%) | Fine Silt (%) | Clay (%) | Organic Matter (%) |
---|---|---|---|---|---|
1.1 | 10.5 | 6.4 | 44.5 | 36.8 | 0.7 |
Date | Soil Condition | Location | Soil Type |
---|---|---|---|
27 January 2016 | Dry condition | Grugliasco | Loamy sand |
5 February 2016 | Dry condition | Agliano | Silty clay loam soil |
3 March 2016 | Wet condition | Grugliasco | Loamy sand |
7 March 2016 | Wet condition | Agliano | Silty clay loam soil |
Meas | Permittivity | SMC | |||
---|---|---|---|---|---|
GNSS-R | TDR | GNSS-R | TDR | ||
PRN23 | Median | 5.5000 | 6.4579 | 0.0937 | 0.1150 |
Mean | 5.5833 | 6.4114 | 0.0954 | 0.1139 | |
Std | 0.6686 | 0.3150 | 0.0150 | 0.0067 |
Meas | Permittivity | SMC | |||
---|---|---|---|---|---|
GNSS-R | TDR | GNSS-R | TDR | ||
PRN13 | Median | 14.5000 | 15.2620 | 0.2771 | 0.2871 |
Mean | 14.5000 | 15.4418 | 0.2763 | 0.2886 | |
Std | 1.9272 | 1.8810 | 0.0252 | 0.0238 |
Meas | Permittivity | SMC | |||
---|---|---|---|---|---|
GNSS-R | TDR | GNSS-R | TDR | ||
PRN15 | Median | 9.0000 | 9.0900 | 0.1636 | 0.1651 |
Mean | 8.8333 | 9.0184 | 0.1602 | 0.1634 | |
Std | 0.9374 | 0.9432 | 0.0168 | 0.0168 |
Meas | Permittivity | SMC | |||
---|---|---|---|---|---|
GNSS-R | TDR | GNSS-R | TDR | ||
PRN7 | Median | 20.0000 | 22.0280 | 0.3432 | 0.3648 |
Mean | 21.0000 | 21.8708 | 0.3531 | 0.3624 | |
Std | 2.7080 | 2.5808 | 0.0287 | 0.0269 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Jin, S.; Savi, P.; Gao, Y.; Tang, J.; Chen, Y.; Li, W. GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning Aided Method: Performance and Validation. Remote Sens. 2019, 11, 1655. https://doi.org/10.3390/rs11141655
Jia Y, Jin S, Savi P, Gao Y, Tang J, Chen Y, Li W. GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning Aided Method: Performance and Validation. Remote Sensing. 2019; 11(14):1655. https://doi.org/10.3390/rs11141655
Chicago/Turabian StyleJia, Yan, Shuanggen Jin, Patrizia Savi, Yun Gao, Jing Tang, Yixiang Chen, and Wenmei Li. 2019. "GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning Aided Method: Performance and Validation" Remote Sensing 11, no. 14: 1655. https://doi.org/10.3390/rs11141655
APA StyleJia, Y., Jin, S., Savi, P., Gao, Y., Tang, J., Chen, Y., & Li, W. (2019). GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning Aided Method: Performance and Validation. Remote Sensing, 11(14), 1655. https://doi.org/10.3390/rs11141655