Integrating Data of ASTER and Landsat-8 OLI (AO) for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China
"> Figure 1
<p>(<b>a</b>) Geographical map; (<b>b</b>) sketch tectonic map and generalized geologic map; (<b>c</b>) the Duolong PCD (Modified from [<a href="#B55-remotesensing-08-00890" class="html-bibr">55</a>]).</p> "> Figure 2
<p>ASTER and L8-OLI pre-processing steps and AO integrating processing flowchart.</p> "> Figure 3
<p>(<b>a</b>) The histogram of spectral offset values between O3 and A1, O4 and A2; (<b>b</b>) Two-dimensional scatterplot and linear fitting of O3 and A1 (Skipping 200 pixels to display); (<b>c</b>) Two-dimensional scatterplot and linear fitting of O4 and A2 (Skipping 200 pixels to display); (<b>d</b>) Mean linear fitting in OLI VNIR bands and ASTER VNIR bands.</p> "> Figure 4
<p>The OLI false color composite image (band 7, 5, 2 in RGB) of the Duolong area, Tibetan Plateau showing the field sample locations.</p> "> Figure 5
<p>Laboratory and field samples of mineral reflectance spectra in study area. The spectra of Res. are resampled to AO bandpasses. (<b>a</b>) F3: field sample number 3; Muscovite GDS 113 Ruby coming from USGS-SL; (<b>b</b>) F12: field sample number 12; Kaolinite CM9 coming from USGS-SL; (<b>c</b>) F8: field sample number 8; Limonite HS41.3 coming from USGS-SL; (<b>d</b>) F4: field sample number 4; Chlorite SMR-13.a coming from USGS-SL.</p> "> Figure 6
<p>The MNF images and eigenvalues (Eig) of AO and ASTER data. (<b>a</b>) The MNF images of AO data; (<b>b</b>) The MNF images of ASTER data; (<b>c</b>) The eigenvalues of AO MNF and ASTER MNF images.</p> "> Figure 7
<p>The abundance of Al-OH group minerals of Duolong PCD. (<b>a</b>) Al-OH<sub>1</sub>, ASTER RBD (B5 + B7)/B6 (Threshold 94.6%); (<b>b</b>) Al-OH<sub>2</sub>, ASTER SWIR bands MTMF (Infeasibility < 5); (<b>c</b>) Al-OH<sub>3</sub>, ASTER SWIR bands MTMF (Infeasibility < 5); (<b>d</b>) False color composite image of Al-OH composition in ASTER BRs B5/B6 (R), B7/B6 (G), B7/B5 (B) (Threshold 97.5%). The green dotted line shows the altered zone outline from field investigations of Duolong PCD. The white areas indicate background values.</p> "> Figure 8
<p>The field photographs of the study areas. (<b>a</b>) regional view of propylitic zone of Duobuza PCD in site 2; (<b>b</b>) regional view of phyllic zone of Duobuza PCD in site 1; (<b>c</b>) ferruginization in propylitic zone of Duobuza PCD in site 4; (<b>d</b>) ferruginization and kaolinization in phyllic zone of Bolong PCD in site 7; (<b>e</b>) ferruginization of cryptoexplosion breccia in phyllic zone, Bolong PCD, site 10; (<b>f</b>) granodiorite-porphyry outcrop in site 9. For the geographical location of the sites see <a href="#remotesensing-08-00890-f004" class="html-fig">Figure 4</a>.</p> "> Figure 9
<p>The abundance of Mg-OH group minerals of Duolong PCD. (<b>a</b>) Mg-OH<sub>1</sub>, ASTER RBD (B6 + B9)/B8 (Threshold 98.6%); (<b>b</b>) Mg-OH<sub>2</sub>, ASTER SWIR bands MTMF (Infeasibility < 5). The green dotted line shows the altered zone outline from field investigations of Duolong PCD. The white areas indicate background values.</p> "> Figure 10
<p>The abundance of ferric iron and ferrous iron group minerals of Duolong PCD. (<b>a</b>) FI<sub>1</sub>, ASTER RB B2/B1 (Threshold 90.8%); (<b>b</b>) FI<sub>1</sub>, AO RB B4/B1 (Threshold 98.5%); (<b>c</b>) FI<sub>1</sub>, ASTER RB B4/B3 (Threshold 95.5%); (<b>d</b>) FI<sub>1</sub>, AO RB B7/B6 (Threshold 97.8%); (<b>e</b>) FI<sub>2</sub>, AO VNIR bands MTMF (Infeasibility < 5); (<b>f</b>) FI<sub>3</sub>, ASTER RB B5/B4 (Threshold 94.9%). The green dotted line shows the altered zone outline from field investigations of Duolong PCD. The white areas indicate background values.</p> "> Figure 11
<p>Simplified alteration map illustrates the distribution of hydrothermal alteration zones in the Duolong PCD, the phyllic, argillic and propylitic zones are produced using MTMF of ASTER SWIR data, the gossans are produced using BR B4/B1 and MTMF of AO VNIR data.</p> ">
Abstract
:1. Introduction
2. Geological Setting
3. Data and Methods
3.1. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and L8’s Operational Land Imager (OLI) Data
3.2. Integration of ASTER and L8 OLI Data
3.2.1. Pre-Processing of ASTER and OLI
3.2.2. ASTER+OLI (AO) Integration Methods
3.3. Spectral Measurements
3.4. Spectral Properties
3.5. Hydrothermal Alteration Mineral Mapping Methods
4. Results and Discussions
4.1. Minimum Noise Fraction (MNF) Transform
4.2. Mineral Mapping Results
4.2.1. Al-OH Abundance
4.2.2. Mg-OH Abundance
4.2.3. Ferric and Ferrous Iron Abundance
4.3. Remotely Sensed Hydrothermal Alteration Zones of the Duolong PCD
5. Conclusions
- (a)
- The analysis of ASTER and AO data using Minimum Noise Fraction (MNF) transform reveals that a combination of ASTER and L8-OLI data (AO) has more mineral information content than either alone. The results of FI1 (B7/B1) and FI2 derived from AO data illustrate good compensatory capabilities, with OLI being well suited for discerning ferric iron minerals and ASTER enabling distinctions between other clay and sulfate mineral species.
- (b)
- The remote sensing study outlines a full picture of the surface-exposed alteration zones. There are three alteration group minerals from the interior to the exterior of Duobuza PCD: Al-OH2 (muscovite, kaolinite, illite, smectite), Al-OH3 (kaolinite, dickite), and Mg-OH2 (chlorite, epidote), which indicate the phyllic, argillic and propylitic alteration zones. Moreover, there are also two alteration group minerals from the interior to the exterior in the Bolong PCD—Al-OH2 (muscovite, kaolinite, illite, smectite) and Al-OH3 (kaolinite, dickite)—which indicate the presence of phyllic and argillic zones. In addition, gossans are also well mapped using the AO VNIR data. The distribution patterns of these alteration zones show a good correlation with the alteration zones derived by field investigations.
- (c)
- In accordance with the characterizations of the remote alteration group minerals, three propositions are delineated around the Duolong PCD. The proposition of Nadun (III, Figure 11) has been validated by primary field works. The authors believe that the three propositions are promising locations for future copper and gold exploration in this part of Duolong.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ranjbar, H.; Honarmand, M.; Moezifa, Z. Application of the Crosta technique for porphyry copper alteration mapping, using ETM+ data in the southern part of the Iranian volcanic sedimentary belt. J. Asian Earth Sci. 2004, 24, 237–243. [Google Scholar] [CrossRef]
- Rowan, L.C.; Crowley, J.K.; Schmidt, R.G.; Ager, C.M.; Mars, J.C. Mapping hydrothermally altered rocks by analyzing hyperspectral image (AVIRIS) data of forested areas in the Southeastern United States. J. Geochem. Explor. 2000, 68, 145–166. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Bedini, E. Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Adv. Space Res. 2011, 47, 60–73. [Google Scholar] [CrossRef]
- Pour, B.A.; Hashim, M. Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran. J. Asian Earth Sci. 2011, 42, 1309–1323. [Google Scholar] [CrossRef]
- Pour, B.A.; Hashim, M. Fusing ASTER, ALI and Hyperion data for enhanced mineral mapping. Int. J. Image Data Fusion 2013, 4, 126–145. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Zaw, K.; Pan, G.T.; Mo, X.X.; Xu, Q.; Hu, Y.Z.; Li, X.Z. Sanjiang Tethyan metallogenesis in S.W. China: Tectonic setting, metallogenic epochs and deposit types. Ore Geol. Rev. 2007, 31, 48–87. [Google Scholar] [CrossRef]
- Qu, X.M.; Hou, Z.Q.; Zaw, K.; Li, Y.G. Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau: Preliminary geochemical and geochronological results. Ore Geol. Rev. 2007, 31, 205–223. [Google Scholar]
- Hou, Z.Q.; Yang, Z.M.; Qu, X.M.; Meng, X.J.; Li, Z.Q.; Beaudoin, G.; Rui, Z.Y.; Gao, Y.F.; Zaw, K. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol. Rev. 2009, 36, 25–51. [Google Scholar] [CrossRef]
- Geng, Q.R.; Zhang, Z.; Peng, Z.M.; Guan, J.L.; Zhu, X.P.; Mao, X.C. Jurassic–Cretaceous granitoids and related tectono-metallogenesis in the Zapug-Duobuza arc, western Tibet. Ore Geol. Rev. 2016, 77, 163–175. [Google Scholar] [CrossRef]
- Li, J.X.; Qin, K.Z.; Li, G.M.; Xiao, B.; Zhao, J.X.; Chen, L. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/39Ar geochronology. J. Asian Earth Sci. 2011, 41, 525–536. [Google Scholar] [CrossRef]
- Yang, Z.M.; Hou, Z.Q.; White, N.C.; Chang, Z.S.; Li, Z.Q.; Song, Y.C. Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet. Ore Geol. Rev. 2009, 36, 133–159. [Google Scholar] [CrossRef]
- Qu, X.M.; Hou, Z.Q.; Zaw, K.; Mo, X.X.; Xu, W.Y.; Xin, H.B. A large-scale copper ore-forming event accompanying rapid uplift of the southern Tibetan Plateau: Evidence from zircon SHRIMP U–Pb dating and LA ICP-MS analysis. Ore Geol. Rev. 2009, 36, 52–64. [Google Scholar]
- Li, J.X.; Qin, K.Z.; Li, G.M.; Xiao, B.; Zhao, J.X.; Cao, M.J.; Chen, L. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu-Au deposit,central Tibet: Evidence from U-Pb geochronology, petrochemistry and Sr-Nd-Hf-O isotope characteristics. Lithos 2013, 160–161, 216–227. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Gallagher, A.J.; Gorelick, N.; Kruse, F.A. Mapping with imaging spectrometer data using the complete band shape least-squares fit to multiple spectral features from multiple materials. In Proceedings of the Third AVIRIS Workshop, Pasadena, CA, USA, 20–21 May 1991.
- Veraverbeke, S.; Stavros, E.N.; Hook, S.J. Assessing fire severity using imaging spectroscopy data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and comparison with multispectral capabilities. Remote Sens. Environ. 2014, 154, 153–163. [Google Scholar] [CrossRef]
- Cocks, T.; Jenssen, R.; Stewart, W.I.; Shields, T. The HyMap airborne hyperspectral sensor: The system, calibration, and performance. In Proceedings of the 1st EARSEL Workshop on Imaging Spectroscopy, Zurich, Switzerland, 6–8 October 1998.
- Hewson, R.; Cudahy, T.; Quigley, M.; Huntington, J.; Whitbourn, L.; Hausknecht, P. Mapping talc mineralisation and associated alteration using airborne and satellite-borne spectrometry: A case study at Mount Fitton, South Australia. In ASEG Extended Abstracts 2003: Geophysical Signatures of South Australian Mineral; Dentith, M.C., Ed.; Australian Society of Exploration Geophysicists (ASEG): Crows Nest, Australia, 2003; Volume 3, pp. 213–221. [Google Scholar]
- Rowan, L.C.; Simpson, C.J.; Mars, J.C. Hyperspectral analysis of the ultramafic complex and adjacent lithologies at Mordor, NT, Australia. Remote Sens. Environ. 2004, 91, 419–431. [Google Scholar] [CrossRef]
- Debba, P.; van Ruitenbeek, F.J.A.; van der Meer, F.D.; Carranza, E.J.M.; Stein, A. Optimal field sampling for targeting minerals using hyperspectral data. Remote Sens. Environ. 2005, 99, 373–386. [Google Scholar] [CrossRef]
- Kratt, C.; Calvin, W.; Coolbaugh, M. Geothermal exploration with Hymap hyperspectral data at Brady-Desert Peak, Nevada. Remote Sens. Environ. 2006, 104, 313–324. [Google Scholar] [CrossRef]
- Sabins, F.F. Remote sensing for mineral exploration. Ore Geol. Rev. 1999, 14, 157–183. [Google Scholar] [CrossRef]
- Tangestani, M.H.; Moore, F. Iron oxide and hydroxyl enhancement using the Crosta Method: A case study from the Zagros Belt, Fars Province, Iran. Int. J. Appl. Earth Obs. 2000, 2, 140–146. [Google Scholar] [CrossRef]
- Goward, S.N.; Masek, J.G.; Williams, D.L.; Irons, J.R.; Thompson, R.J. The Landsat 7 mission Terrestrial research and applications for the 21st century. Remote Sens. Environ. 2001, 78, 3–12. [Google Scholar] [CrossRef]
- Hewson, R.D.; Cudahy, T.J.; Drake-Brockman, J.; Meyers, J.; Hashemi, A. Mapping geology associated with manganese mineralisation using spectral sensing techniques at Woodie Woodie, East Pilbara. Explor. Geophys. 2006, 37, 389–400. [Google Scholar] [CrossRef]
- Hewson, R.; Cudahy, T.; Jones, M.; Thomas, M.; Laukamp, C.; Agustin, F. Mineral and compositional mapping using airborne hyperspectral and geophysical products, North Queensland. In Proceedings of the 20th International Geophysical Conference and Exhibition, Adelaide, Australia, 22–25 February 2009.
- Caccetta, M.; Collings, S.; Cudahy, T. A calibration methodology for continental scale mapping using ASTER imagery. Remote Sens. Environ. 2013, 138, 306–317. [Google Scholar] [CrossRef]
- Abrams, M.; Tsu, H.; Hulley, G.; Iwao, K.; Pieri, D.; Cudahy, T.; Kargel, J. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products. Int. J. Appl. Earth Obs. 2015, 38, 292–301. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sens. Environ. 2010, 114, 2011–2025. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol. Rev. 2012, 44, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gabr, S.; Ghulam, A.; Kusky, T. Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol. Rev. 2010, 38, 59–69. [Google Scholar] [CrossRef]
- Hewson, R.D.; Cudahy, T.J.; Mizuhiko, S.; Ueda, K.; Mauger, A.J. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sens. Environ. 2005, 99, 159–172. [Google Scholar] [CrossRef]
- Kruse, F.A. Validation of DigitalGlobe WorldView-3 Earth imaging satellite shortwave infrared bands for mineral mapping. J. Appl. Remote Sens. 2015, 9, 307–310. [Google Scholar] [CrossRef]
- Asadzadeh, S.; Filho, C.R.D.S. Investigating the capability of WorldView-3 superspectral data for direct hydrocarbon detection. Remote Sens. Environ. 2015, 173, 162–173. [Google Scholar] [CrossRef]
- Kokaly, R.F.; King, T.V.V.; Livo, K.E. Airborne Hyperspectral Survey of Afghanistan 2007: Flight Line Planning and HyMap Data Collection; U.S. Geological Survey Open-File Report 2008-1235; U.S. Geological Survey: Reston, VA, USA, 2008; pp. 1–14.
- The Potential Evaluation of National Mineral Resources. Available online: http://imr.cags.ac.cn/qlpj/index.html (accessed on 3 July 2016).
- Hubbard, B.E.; Crowley, J.K. Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sens. Environ. 2005, 99, 173–186. [Google Scholar] [CrossRef]
- Zadeh, M.H.; Tangestani, M.H.; Roldan, F.V.; Yusta, I. Sub-Pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data. Adv. Space Res. 2014, 53, 440–451. [Google Scholar] [CrossRef]
- Hubbard, B.E.; Crowley, J.K.; Zimbelman, D.R. Comparative alteration mineral mapping using visible to shortwave infrared (0.4–2.4 μm) Hyperion, ALI and ASTER imagery. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1401–1410. [Google Scholar] [CrossRef]
- Rowan, L.C.; Schmidt, R.G.; Mars, J.C. Distribution of hydrothermally altered rocks in the RekoDiq, Pakistan mineralized area based on spectral analysis of ASTER data. Remote Sens. Environ. 2006, 104, 74–87. [Google Scholar] [CrossRef]
- Tommaso, I.D.; Rubinstein, N. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol. Rev. 2007, 32, 275–290. [Google Scholar] [CrossRef]
- Azizi, H.; Tarverdi, M.A.; Akbarpour, A. Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Adv. Space Res. 2010, 46, 99–109. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. Available online: http://science.nasa.gov/missions/ldcm/ (accessed on 7 May 2016).
- Landsat 8 (L8) Data Users Handbook (Version 2.0). Available online: http://science.nasa.gov/missions/ldcm/ (accessed on 7 May 2016).
- Pour, A.B.; Hashim, M. Hydrothermal alteration mapping from Landsat-8 data, SarCheshmeh copper mining district, south-eastern Islamic Republic of Iran. J. Taibah Univ. Sci. 2015, 9, 155–166. [Google Scholar] [CrossRef]
- Lymburner, L.; Botha, E.; Hestir, E.; Anstee, J.; Sagar, S.; Dekker, A.; Malthus, T. Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens. Environ. 2016, in press. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using advanced spaceborne thermal emission and reflection radiometer (ASTER) data and logical operator algorithms. Geosphere 2006, 2, 161–186. [Google Scholar] [CrossRef]
- Bedini, E. Mapping alteration minerals at Malmbjerg molybdenum deposit, central East Greenland, by Kohonen self-organizing maps and matched filter analysis of HyMap data. Int. J. Remote Sens. 2012, 33, 939–961. [Google Scholar] [CrossRef]
- Liang, H.; Liu, J.M.; Li, S.K. Analysis of precipitable water vapor source distribution and its seasonal variation characteristics over Tibetan Plateau and its surroundings. J. Natl. Resour. 2006, 21, 0526–0535. [Google Scholar]
- Xu, W.; Li, C.; Wang, M.; Fan, J.J.; Wu, H.; Li, X. Subduction of a spreading ridge within the Bangong Co-Nujiang Tethys Ocean: Evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu-Au deposit, western Tibet. Gondwana Res. 2016, in press. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.C.; Tang, J.X.; Li, Y.B.; Gao, K.; Wang, Q.; Li, Z.; Li, J.L. Alteration and vein systems of Duobuza gold_rich porphyry copper deposit, Tibet. Miner. Depos. 2014, 33, 1268–1286. [Google Scholar]
- Zhu, X.P.; Chen, H.A.; Ma, D.F.; Huang, H.X.; Li, G.M.; Li, Y.B.; Li, Y.C. Re-Os dating for the molybdenite from Bolong porphyry copper-gold deposit in Tibet, China and its geological significance. Acta Petrol. Sin. 2011, 27, 2159–2164. [Google Scholar]
- Yang, Y.; Zhang, Z.; Tang, J.X.; Chen, Y.C.; Li, Y.B.; Wang, L.Q.; Li, J.L.; Gao, K.; Wang, Q.; Yang, H.H. Mineralization, alteration and vein systems of the Bolong porphyry copper deposit in the Duolong ore concentration area, Tibet. Geol. China 2015, 42, 759–776. [Google Scholar]
- Wang, Q.; Tang, J.X.; Fang, X.; Lin, B.; Song, Y.; Wang, Y.Y.; Yang, H.H.; Yang, C.; LI, Y.B.; Wei, L.J.; et al. Petrogenetic setting of andsites in Rongna ore block, Tiegelong Cu (Au−Ag) deposit, Duolong ore concentration area, Tibet: Evidence from zircon U−Pb LA−ICP−MS dating and petrogeochemistry of and sites. Geol. China 2015, 42, 1324–1336. [Google Scholar]
- Yamaguchi, Y.; Fujisada, H.; Kudoh, M. ASTER instrument characterization and operation scenario. Adv. Space Res. 1999, 23, 1415–1424. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C.; Simpson, C.J. Lithologic mapping in the mountain pass, California area using Advanced Spaceborne thermal Emission and Reflection Radiometer(ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C.; Simpson, C.J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER). Remote Sens. Environ. 2005, 99, 105–126. [Google Scholar] [CrossRef]
- Bertoldi, L.; Massironi, M.; Visonà, D.; Carosi, R.; Montomoli, C.; Gubert, F.; Naletto, G.; Pelizzo, M.G. Mapping the Buraburi granite in the Himalaya of Western Nepal: Remote sensing analysis in a collisional belt with vegetation cover and extreme variation of topography. Remote Sens. Environ. 2011, 115, 1129–1144. [Google Scholar] [CrossRef]
- Hewson, R.; Cudahy, T. Issues Affecting Geological Mapping with ASTER Data: A Case Study of the Mt Fitton Area, South Australia. In Land Remote Sensing and Global Environmental Change; Ramachandran, B., Justice, C.O., Eds.; Springer: New York, NY, USA, 2010; Volume 11, pp. 273–300. [Google Scholar]
- Duuring, P.; Hagemann, S.G.; Novikova, Y.; Cudahy, T.; Laukamp, C. Targeting Iron Ore in Banded Iron Formations Using ASTER Data: Weld Range Greenstone Belt, Yilgarn Craton, Western Australia. Econ. Geol. 2012, 107, 585–597. [Google Scholar] [CrossRef]
- Iwasaki, A.; Fujisada, H.; Akao, H.; Shindou, O.; Akagi, S. Enhancement of spectral separation performance for ASTER/SWIR. In Proceedings of the SPIE 4486, Infrared Spaceborne Remote Sensing IX, San Diego, CA, USA, 11 February 2002; pp. 42–50.
- Kumar, C.; Shetty, A.; Raval, S.; Champati Ray, P.K.; Sharma, R. Sub-Pixel mineral mapping using EO-1 Hyperion hyperspectral data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-8, 455–461. [Google Scholar] [CrossRef]
- Yang, Z.A.; Peng, S.L.; Zhu, G.C.; Shi, F.F.; Zou, L.; Zhang, Y.F. Spectrum spatial structure characteristic analysis of remote sensing alteration information and interference factors. J. Cent. South Univ. Technol. 2009, 16, 0647–0652. [Google Scholar] [CrossRef]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Naito, C. Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands. Int. J. Remote Sens. 2003, 24, 4311–4323. [Google Scholar] [CrossRef]
- Lowell, J.D.; Guilbert, J.M. Lateral and vertical alteration mineralization zoning in porphyry ore deposits. Econ. Geol. Bull. Soc. 1970, 65, 373–408. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M. Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar Volcanic Belt, Iran. Adv. Space Res. 2012, 49, 753–769. [Google Scholar] [CrossRef]
- Moghtaderi, A.; Moore, F.; Mohammadzadeh, A. The application of advanced space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the Chadormalu paleocrater, Bafq region, Central Iran. J. Asian Earth Sci. 2007, 30, 238–252. [Google Scholar] [CrossRef]
- Cudahy, T.J.; Ramanaidou, E.R. Measurement of the hematite:goethite ratio using field visible and near-infrared spectrometry in channel iron deposits, Western Australia. Aust. J. Earth Sci. 1997, 44, 411–420. [Google Scholar] [CrossRef]
- Molan, Y.E.; Refahib, D.; Tarashti, A.H. Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data. Int. J. Appl. Earth Obs. 2014, 27, 117–127. [Google Scholar] [CrossRef]
- Rowan, L.C.; Goetz, A.F.H.; Ashley, R.P. Discrimination of hydrothermaly altered rocks and unaltered rocks in visible and near infrared multispectral images. Geophysics 1977, 42, 522–535. [Google Scholar] [CrossRef]
- Crowley, J.K.; Brickey, D.W.; Rowan, L.C. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images. Remote Sens. Environ. 1989, 29, 121–134. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping target signatures via partial unmixing of AVIRIS data, Summaries of the fifth annual JPL airborne geosciences workshop. In Jet Propulsion Laboratory Special Publication; 1995. Available online: http://aviris.jpl.nasa.gov/proceedings/index.html (accessed on 7 May 2016). [Google Scholar]
- Ninomiya, Y.; Fu, B.; Cudahy, T. Detecting lithology with Advanced Spaceborne Thermal Emission and Refection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data. Remote Sens. Environ. 2005, 99, 127–139. [Google Scholar] [CrossRef]
- Kruse, F.A.; Perry, S.L. Improving multispectral mapping by spectral modeling with hyperspectral signatures. J. Appl. Remote Sens. 2009, 3. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A. Analysis of imaging spectrometer data using N-dimensional geometry and a mixture-tuned matched filtering approach. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4138–4152. [Google Scholar] [CrossRef]
- Hewson, R.D.; Mah, A.; Dunne, M.; Cudahy, T.J. Mapping Mineralogical and structural relationships with satellite-borne ASTER and airborne geophysics at Broken Hill. In Proceedings of the ASEG 16th Geophysical Conference and Exhibition, Adelaide, Australia, 16–19 February 2003.
- Green, A.A.; Berman, M.; Switzer, B.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef]
- Green, R.O.; Boardman, J.W. Exploration of the Relationship between Information Content and Signal-to-Noise Ratio and Spatial Resolution in AVIRIS Spectral Data. In Summaries of the Ninth Annual JPL Airborne Geosciences Workshop; Available online: http://aviris.jpl.nasa.gov/proceedings/index.html (accessed on 7 May 2016).
- Boardman, J.W.; Green, R.O. Exploring the Spectral Variability of the Earth as Measured by AVIRIS in 1999. In Summaries of the Ninth Annual JPL Airborne Geosciences Workshop; Available online: http://aviris.jpl.nasa.gov/proceedings/index.html (accessed on 7 May 2016).
- Duke, E.F. Near infrared spectra of muscovite, Tschermak substitution and metamorphic reaction progress: Implications for remote sensing. Geology 1994, 22, 621–624. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 1990, 95, 12653–12680. [Google Scholar] [CrossRef]
- Tang, J.X.; Sun, X.G.; Ding, S.; Wang, Q.; Wang, Y.Y.; Yang, C.; Chen, H.Q.; Li, Y.B.; Li, Y.B.; Wei, L.J.; et al. Discovery of the Epithermal Deposit of Cu (Au-Ag) in the Duolong Ore Concentrating Area, Tibet. Acta Geosci. Sin. 2014, 35, 6–10. [Google Scholar] [CrossRef]
- Tang, J.X.; (MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing, China); Duo, J.; (Tibet Bureau of Geology and Mineral Exploration and Development, Lhasa, Tibet, China); Li, J.G.; (Tibet Bureau of Geology and Mineral Exploration and Development, Lhasa, Tibet, China); Zhong, K.H.; (College of Earth Sciences, Chengdu University of Technology, Chengdu, China); Zhang, T.B.; (College of Earth Sciences, Chengdu University of Technology, Chengdu, China). Personal communication, 2011.
Sensors | Subsystem | Band Number | Spectral Range (μm) | Ltypical SNR 1 | Spatial Resolution (m) | Swath Width (km) |
---|---|---|---|---|---|---|
ASTER | VNIR | 1 | 0.52~0.60 | 370 | 15 | 60 |
2 | 0.63~0.69 | 306 | ||||
3N | 0.78~0.86 | 202 | ||||
3B | 0.78~0.86 | 183 | ||||
SWIR | 4 | 1.600~1.700 | 466 | 30 | ||
5 | 2.145~2.185 | 254 | ||||
6 | 2.185~2.225 | 229 | ||||
7 | 2.235~2.285 | 234 | ||||
8 | 2.295~2.365 | 258 | ||||
9 | 2.360~2.430 | 231 | ||||
ETM+ | VNIR | 8(Pan) | 0.520~0.900 | 16 | 15 | 185 |
1 | 0.450~0.515 | 40 | 30 | |||
2 | 0.525~0.605 | 41 | ||||
3 | 0.633~0.690 | 28 | ||||
4 | 0.780~0.900 | 35 | ||||
SWIR | 5 | 1.550~1.750 | 36 | |||
7 | 2.090~2.350 | 29 | ||||
OLI | VNIR | 8(Pan) | 0.500~0.680 | 149 | 15 | 185 |
1 | 0.433~0.453 | 238 | 30 | |||
2 | 0.450~0.515 | 364 | ||||
3 | 0.525~0.600 | 302 | ||||
4 | 0.630~0.680 | 227 | ||||
5 | 0.850~0.880 | 204 | ||||
SWIR | 6 | 1.560~1.660 | 265 | |||
7 | 2.100~2.300 | 334 | ||||
9 | 1.360~1.390 | 165 |
Subsystem | Band Number | ASTER/OLI Band Correspondence | Spectral Range (μm) | Center Wavelength (μm) | FWHM | Ltypical SNR |
---|---|---|---|---|---|---|
VNIR | 1 | OLI1 | 0.433~0.453 | 0.443 | 0.020 | 238 |
2 | OLI2 | 0.450~0.515 | 0.483 | 0.065 | 364 | |
3 | ASTER1 | 0.52~0.60 | 0.560 | 0.080 | 370 | |
4 | ASTER2 | 0.63~0.69 | 0.660 | 0.060 | 306 | |
5 | ASTER3N | 0.78~0.86 | 0.820 | 0.080 | 204 | |
6 | OLI5 | 0.850~0.880 | 0.865 | 0.030 | 460 | |
SWIR | 7 | ASTER4 | 1.600~1.700 | 1.650 | 0.100 | 466 |
8 | ASTER5 | 2.145~2.185 | 2.165 | 0.040 | 254 | |
9 | ASTER6 | 2.185~2.225 | 2.205 | 0.045 | 229 | |
10 | ASTER7 | 2.235~2.285 | 2.260 | 0.050 | 234 | |
11 | ASTER8 | 2.295~2.365 | 2.330 | 0.070 | 258 | |
12 | ASTER9 | 2.360~2.430 | 2.395 | 0.070 | 231 |
Samples | Alteration Zones | Alteration Minerals or Granite |
---|---|---|
1 | Phyllic | Limonite |
2 | Propylitic | Chlorite |
3 | Phyllic | Muscovite |
4 | Propylitic | Chlorite |
5 | Propylitic | Limonite, chlorite |
6 | Phyllic + argillic | Muscovite |
7 | Argillic | Kaolinite |
8 | Phyllic + argillic | Limonite |
9 | Phyllic | Granodiorite-porphyry |
10 | Phyllic | Muscovite, limonite |
11 | Phyllic + argillic | Limonite |
12 | Phyllic + argillic | Kaolinite |
Group Minerals | Objects Identified | ASTER Bands Parameters | AO Bands Parameters |
---|---|---|---|
Al-OH1 | Muscovite, kaolinite, illite, | RBD: (B5 + B7)/B6 [32,57,60,61,78] | RBD *: (B8 + B10)/B9 |
Al-OH2 | Muscovite, kaolinite, illite, smectite | MTMF: B4~B9 | MTMF *: B7~B12 |
Al-OH3 | Kaolinite, dickite | MTMF: B4~B9 | MTMF *: B7~B12 |
White mica composition | Al-rich mica, Al-poor mica | BRs: B5/B6, B7/B6, B7/B5 [32,60,78] | BRs *: B8/B9, B9/B8, B10/B8 |
Mg-OH1 | Chlorite, epidote | RBD: (B6 + B9)/B8 [25,32,60] | RBD *: (B9 + B12)/B11 |
Mg-OH2 | Chlorite, epidote | MTMF: B4~B9 | MTMF *: B7~B12 |
Ferric iron (FI1) | Hematite, goethite | BRs: B2/B1 [25,57], B4/B3 | BRs: B7/B6, B4/B1 |
Ferric iron (FI2) | Goethite | MTMF: B1~B7 | |
Ferrous iron (FI3) | Magnetite, pyrite | BR: B5/B4 [56,60] | BR *: B7/B5 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Yi, G.; Li, H.; Wang, Z.; Tang, J.; Zhong, K.; Li, Y.; Wang, Q.; Bie, X. Integrating Data of ASTER and Landsat-8 OLI (AO) for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China. Remote Sens. 2016, 8, 890. https://doi.org/10.3390/rs8110890
Zhang T, Yi G, Li H, Wang Z, Tang J, Zhong K, Li Y, Wang Q, Bie X. Integrating Data of ASTER and Landsat-8 OLI (AO) for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China. Remote Sensing. 2016; 8(11):890. https://doi.org/10.3390/rs8110890
Chicago/Turabian StyleZhang, Tingbin, Guihua Yi, Hongmei Li, Ziyi Wang, Juxing Tang, Kanghui Zhong, Yubin Li, Qin Wang, and Xiaojuan Bie. 2016. "Integrating Data of ASTER and Landsat-8 OLI (AO) for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China" Remote Sensing 8, no. 11: 890. https://doi.org/10.3390/rs8110890
APA StyleZhang, T., Yi, G., Li, H., Wang, Z., Tang, J., Zhong, K., Li, Y., Wang, Q., & Bie, X. (2016). Integrating Data of ASTER and Landsat-8 OLI (AO) for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China. Remote Sensing, 8(11), 890. https://doi.org/10.3390/rs8110890