The Impact of Local Acquisition Time on the Accuracy of Microwave Surface Soil Moisture Retrievals over the Contiguous United States
"> Figure 1
<p>Mean Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) product averaged over: (<b>a</b>) the entire study temporal period and (<b>b</b>) core summer months only (June, July, and August).</p> "> Figure 2
<p>(<b>a</b>–<b>f</b>) The all-year spatial distribution maps of AM (12:00 a.m. to 11:59 a.m.) minus PM (12:00 p.m. to 11:59 p.m.) differences of two correlation-based evaluation strategies for Advanced Microwave Scanning Radiometer—Earth Observing System (AMSR-E; first row), Soil Moisture and Ocean Salinity (SMOS; second row), and Advanced Scatterometer (ASCAT; third row)—namely, triple collocation (first column) and direct comparison against ground-based measurements (second column).</p> "> Figure 3
<p>(<b>a</b>–<b>f</b>) The JJA (June, July, and August) spatial distribution maps of AM minus PM differences of two correlation-based evaluation strategies for AMSR-E (first row), SMOS (second row), and ASCAT (third row)—namely, triple collocation (first column) and direct comparison against ground-based measurements (second column).</p> "> Figure 4
<p>The scatter plot of AM <span class="html-italic">versus</span> PM differences ([AM−PM]) via triple collocation (<span class="html-italic">R</span><sub>TC</sub>[AM−PM]) against direct comparison (<span class="html-italic">R</span><sub>DC</sub>[AM−PM]) for three satellite products: AMSR-E (circles), SMOS (squares), and ASCAT (diamonds). Results are aggregated and color-coded based on a vegetation optical depth (VOD) classification. Class 1 and Class 6 contain pixels with VOD values smaller than 0.1 and larger than 0.9, respectively. Classes 2 to 5 contain pixels with VOD values 0.1 to 0.9 with an interval of 0.2.</p> "> Figure 5
<p>Relationship between the NDVI and accuracy differences of two evaluation strategies under all-year (<span class="html-italic">R</span><sub>TC</sub>[ALL] in blue, <span class="html-italic">R</span><sub>DC</sub>[ALL] in red) and JJA (<span class="html-italic">R</span><sub>TC</sub>[JJA] in cyan, <span class="html-italic">R</span><sub>DC</sub>[JJA] in magenta) scenarios for: (<b>a</b>) AMSR-E, (<b>b</b>) SMOS, and (<b>c</b>) ASCAT. The “<span class="html-italic">R</span>” values are computed as the correlation coefficients between mean values and the corresponding fitting lines.</p> ">
Abstract
:1. Introduction
2. Datasets
2.1. Satellite-Based Surface Soil Moisture Retrievals
2.2. Model-Based Surface Soil Moisture Estimates
2.3. Ground-Based Surface Soil Moisture Observations
2.4. Pre-Processing
2.5. Normalized Difference Vegetation Index Product
3. Methodology
3.1. Triple Collocation
3.2. Direct Comparison
4. Results
4.1. Spatial Variation of Performance Differences
4.2. Relationship with Regard to Land Surface Conditions
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [PubMed]
- Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Naeimi, V.; Scipal, K.; Bartalis, Z.; Hasenauer, S.; Wagner, W. An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1999–2013. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.J.; Font, J.; Reul, N.; Gruhier, C.; et al. The SMOS mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef] [Green Version]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Goodrich, D.C.; Moran, M.S.; Du, J. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4256–4272. [Google Scholar] [CrossRef]
- Le Vine, D.M.; Abraham, S.A.J.I. Faraday rotation and passive microwave remote sensing of soil moisture from space. In Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere, 1st ed.; Pampaloni, P., Paloscia, S., Eds.; VSP: Zeist, The Netherlands, 2000; pp. 89–96. [Google Scholar]
- Aksoy, M.; Johnson, J.T. A study of SMOS RFI over North America. IEEE Geosci. Remote Sens. Lett. 2013, 10, 4210–4212. [Google Scholar] [CrossRef]
- Zhao, T.; Shi, J.; Bindlish, R.; Jackson, T.J.; Kerr, Y.H.; Cosh, M.H.; Cui, Q.; Li, Y.; Xiong, C.; Che, T. Refinement of SMOS multiangular brightness temperature toward soil moisture retrieval and its analysis over reference targets. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2015, 8, 589–603. [Google Scholar] [CrossRef]
- Saleh, K.; Wigneron, J.P.; De Rosnay, P.; Calvet, J.C.; Escorihuela, M.J.; Kerr, Y.; Waldteufel, P. Impact of rain interception by vegetation and mulch on the L-band emission of natural grass. Remote Sens. Environ. 2006, 101, 127–139. [Google Scholar] [CrossRef]
- Escorihuela, M.J.; Kerr, Y.H.; De Rosnay, P.; Saleh, K.; Wigneron, J.P.; Calvet, J.C. Effects of dew on the radiometric signal of a grass field at L-band. IEEE Geosci. Remote Sens. Lett. 2009, 6, 67–71. [Google Scholar] [CrossRef]
- Rowlandson, T.L.; Hornbuckle, B.K.; Bramer, L.M.; Patton, J.C.; Logsdon, S.D. Comparisons of evening and morning SMOS passes over the Midwest United States. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1544–1555. [Google Scholar] [CrossRef]
- Draper, C.S.; Walker, J.P.; Steinle, P.J.; de Jeu, R.A.; Holmes, T.R. An evaluation of AMSR-E derived soil moisture over Australia. Remote Sens. Environ. 2009, 113, 703–710. [Google Scholar] [CrossRef]
- McColl, K.A.; Vogelzang, J.; Konings, A.G.; Entekhabi, D.; Piles, M.; Stoffelen, A. Extended triple collocation: Estimating errors and correlation coefficients with respect to an unknown target. Geophys. Res. Lett. 2014, 41, 6229–6236. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res.: Earth Surf. 2008, 113, F01002. [Google Scholar] [CrossRef]
- De Jeu, R.; Wagner, W.; Holmes, T.; Dolman, A.; van de Giesen, N.; Friesen, J. Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys. 2008, 29, 399–420. [Google Scholar] [CrossRef]
- Dorigo, W.; Scipal, K.; Parinussa, R.; Liu, Y.; Wagner, W.; de Jeu, R.; Naeimi, V. Error characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sc. 2010, 14, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Draper, C.; Reichle, R.; de Jeu, R.; Naeimi, V.; Parinussa, R.; Wagner, W. Estimating root mean square errors in remotely sensed soil moisture over continental scale domains. Remote Sens. Environ. 2013, 137, 288–298. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Al-Yaari, A.; Wigneron, J.P.; Ducharne, A.; Kerr, Y.H.; Wagner, W.; de Lannoy, G.; Reichle, R.; Al Bitar, A.; Dorigo, W.; Richaume, P.; et al. Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land). Remote Sens. Environ. 2014, 152, 614–626. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Mitchell, K.; Ek, M.; Sheffield, J.; Cosgrove, B.; Wood, E.; Luo, L.; Alonge, C.; Wei, H.; Meng, J.; et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res.: Atmos. 2012, 117, D03109. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res.: Atmos. 2003, 108, D22. [Google Scholar] [CrossRef]
- Hain, C.R.; Crow, W.T.; Mecikalski, J.R.; Anderson, M.C.; Holmes, T. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. J. Geophys. Res.: Atmos. 2011, 116, D15107. [Google Scholar] [CrossRef]
- Soil Climate Analysis Network Data and Products. Available online: http://www.wcc.nrcs.usda.gov/scan/ (accessed on 13 October 2015).
- Schaefer, G.L.; Cosh, M.H.; Jackson, T.J. The USDA natural resources conservation service soil climate analysis network (SCAN). J. Atmos. Oceanic Tech. 2007, 24, 2073–2077. [Google Scholar] [CrossRef]
- U.S. Climate Reference Network. Available online: http://www.ncdc.noaa.gov/crn/ (accessed on 13 October 2015).
- Meesters, A.G.; de Jeu, R.A.; Owe, M. Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Geosci. Remote Sens. Lett. 2005, 2, 121–123. [Google Scholar] [CrossRef]
- Li, L.; Njoku, E.G.; Im, E.; Chang, P.S.; Germain, K.S. A preliminary survey of radio-frequency interference over the US in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens. 2004, 42, 380–390. [Google Scholar] [CrossRef]
- MODIS Vegetation Indices Monthly L3 Global 0.05Deg CMG. Available online: https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13c2 (accessed on 26 August 2015).
- Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeorol. 2010, 11, 832–840. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D. Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 2004, 31, L19501. [Google Scholar] [CrossRef]
- Miralles, D.G.; Crow, W.T.; Cosh, M.H. Estimating spatial sampling errors in coarse-scale soil moisture estimates derived from point-scale observations. J. Hydrometeorol. 2010, 11, 1423–1429. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res.: Ocean. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- Scipal, K.; Holmes, T.; de Jeu, R.; Naeimi, V.; Wagner, W. A possible solution for the problem of estimating the error structure of global soil moisture data sets. Geophys. Res. Lett. 2008, 35, L24403. [Google Scholar] [CrossRef]
- Parinussa, R.; Holmes, T.; Yilmaz, M.; Crow, W.T. The impact of land surface temperature on soil moisture anomaly detection from passive microwave observations. Hydrol. Earth Syst. Sc. 2011, 15, 3135–3151. [Google Scholar] [CrossRef]
- Leroux, D.J.; Kerr, Y.H.; Richaume, P.; Fieuzal, R. Spatial distribution and possible sources of SMOS errors at the global scale. Remote Sens. Environ. 2013, 133, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, M.T.; Crow, W.T. Evaluation of assumptions in soil moisture triple collocation analysis. J. Hydrometeorol. 2014, 15, 1293–1302. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, RG2002. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. The bootstrap estimate of standard error. In An Introduction to the Bootstrap, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 1994; pp. 45–59. [Google Scholar]
- Van Emmerik, T.; Steele-Dunne, S.C.; Judge, J.; van de Giesen, N. Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3855–3869. [Google Scholar] [CrossRef]
- Du, J.; Jackson, T.J.; Bindlish, R.; Cosh, M.H.; Li, L.; Hornbuckle, B.K.; Kabela, E.D. Effect of dew on aircraft-based passive microwave observations over an agricultural domain. J. Appl. Remote Sens. 2012, 6, 063571-1–063571-10. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, F.; Crow, W.T.; Shen, H.; Parinussa, R.M.; Holmes, T.R.H. The Impact of Local Acquisition Time on the Accuracy of Microwave Surface Soil Moisture Retrievals over the Contiguous United States. Remote Sens. 2015, 7, 13448-13465. https://doi.org/10.3390/rs71013448
Lei F, Crow WT, Shen H, Parinussa RM, Holmes TRH. The Impact of Local Acquisition Time on the Accuracy of Microwave Surface Soil Moisture Retrievals over the Contiguous United States. Remote Sensing. 2015; 7(10):13448-13465. https://doi.org/10.3390/rs71013448
Chicago/Turabian StyleLei, Fangni, Wade T. Crow, Huanfeng Shen, Robert M. Parinussa, and Thomas R. H. Holmes. 2015. "The Impact of Local Acquisition Time on the Accuracy of Microwave Surface Soil Moisture Retrievals over the Contiguous United States" Remote Sensing 7, no. 10: 13448-13465. https://doi.org/10.3390/rs71013448
APA StyleLei, F., Crow, W. T., Shen, H., Parinussa, R. M., & Holmes, T. R. H. (2015). The Impact of Local Acquisition Time on the Accuracy of Microwave Surface Soil Moisture Retrievals over the Contiguous United States. Remote Sensing, 7(10), 13448-13465. https://doi.org/10.3390/rs71013448