Land Cover and Crop Type Classification along the Season Based on Biophysical Variables Retrieved from Multi-Sensor High-Resolution Time Series
"> Figure 1
<p>Location of the study site in southwest France. The blue box represents the study area. The background image is a Landsat-8 False Color Composite of 20 August 2014.</p> "> Figure 2
<p>Temporal distribution of the images and their respective percentage of cloud-free area expressed as a fraction of the study area along the 2013 growing season.</p> "> Figure 3
<p>Temporal profiles of NDVI and FCOVER mean (1 standard deviation) computed from the reference sample set for selected classes.</p> "> Figure 4
<p>Distribution of the signal-to-noise ratio by land cover and crop types and by input data. NDVI shows higher ratios, which indicate more temporal consistency. Ratios between biophysical variables and NDVI particularly differ for the winter crop classes. Sunflower appears less affected by noise.</p> "> Figure 5
<p>End-of-season maps for the six classifiers: (<b>a</b>) Band-C; (<b>b</b>) NDVI-C; (<b>c</b>) LAI-C; (<b>d</b>) FAPAR-C; (<b>e</b>) FCOVER-C; (<b>f</b>) BPV-C. Bands-C provides the most accurate classification accuracy, followed by NDVI-C and the biophysical variables. The pepper and salt is more visible on maps derived from biophysical variables than on the NDVI-C and Bands-C maps. This ought to be related to the lower SNR observed for biophysical variables.</p> "> Figure 6
<p>Evolution of the accuracy along the season. (<b>a</b>) Evolution of the overall accuracy over time. (<b>b</b>) Evolution of the F<sub>1</sub>-score over time for the FCOVER classification.</p> "> Figure 7
<p>Importance of the variables in FCOVER-Cs. (<b>a</b>) Importance of features (acquisition dates) along the season to the overall accuracy of classification. From bottom to top are images accumulated along the season, while from left to right, the importance of each new date is assessed. Note that the top line in this graph corresponds to the FCOVER line in <a href="#remotesensing-07-10400-f007" class="html-fig">Figure 7</a>b. (<b>b</b>) Measures of the importance of the different dates in the classification accuracy. The FCOVER temporal profiles are presented with the dotted line for winter crop and with the continuous line for summer crop.</p> "> Figure 8
<p>Impact of the number of variables on the FCOVER-C accuracy. For time series lengths ranging from 1–33, ten combinations were systematically and randomly selected. For each random subset, a classifier was trained and its accuracy evaluated. With more than nine dates, the increase in accuracy resulting from adding more dates flattens.</p> ">
Abstract
:1. Introduction
2. Material
2.1. Study Site
2.2. Datasets
3. Methodology
3.1. Biophysical Variable Retrieval
3.2. Land Cover Classification along the Season and Assessment
Class | Training (n pixels) | Validation (n pixels) |
---|---|---|
Barley | 1849 | 1609 |
Corn | 16,670 | 18,180 |
Rapeseed | 3755 | 4526 |
Sunflower | 9393 | 7571 |
Winter Wheat | 14,769 | 11,349 |
Broadleaved Forest | 1645 | 2116 |
Needle-leaved Forest | 1479 | 915 |
Grassland | 8160 | 10,162 |
Urban | 3108 | 1752 |
Water | 592 | 434 |
3.3. Importance of the Date and of the Length of the Time Series
4. Results
4.1. Biophysical Variable Retrieval and Temporal Consistency
LAI | FAPAR (Black Sky) | FAPAR (White Sky) | FCOVER | |
---|---|---|---|---|
R2 | 0.83 | 0.86 | 0.84 | 0.79 |
Bias | 0.07 | 0.02 | 0.05 | 0.09 |
RMSE | 0.49 | 0.1 | 0.12 | 0.15 |
4.2. Classification Results
Barley | Corn | Rapeseed | Sunflower | W. wheat | Broadleaved F. | Needleleaved F. | Grassland | Urban | Water | OA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bands-C | PA | 27.5 | 91.7 | 87.1 | 74.9 | 90.9 | 78.5 | 89.1 | 78.1 | 96.5 | 100 | 84.6 |
UA | 52.7 | 87.2 | 92.8 | 84.6 | 79.4 | 93.2 | 64.9 | 86 | 84.2 | 99.3 | ||
NDVI-C | PA | 42.2 | 90.3 | 72.7 | 72.4 | 86.5 | 84.4 | 77.8 | 76 | 90.9 | 98.9 | 81.8 |
UA | 59.9 | 86 | 89.7 | 80.8 | 77.7 | 92.8 | 70.4 | 79.2 | 73.3 | 99.8 | ||
FAPAR-C | PA | 38.2 | 89.3 | 49.8 | 70 | 78.1 | 35.6 | 52.9 | 69.4 | 54.6 | 95.9 | 73.2 |
UA | 51.9 | 81.9 | 67 | 74.7 | 64.5 | 86.3 | 50.7 | 71.3 | 75.8 | 94.8 | ||
LAI-C | PA | 44.7 | 89.4 | 64 | 70.6 | 73 | 23 | 61.9 | 69.2 | 58.3 | 36.2 | 73.0 |
UA | 49.7 | 81.6 | 69.1 | 74.9 | 66.2 | 76.4 | 86.1 | 69.2 | 64.3 | 43.1 | ||
FCOVER-C | PA | 36.2 | 89.9 | 67.2 | 68.6 | 80.1 | 58.6 | 49.5 | 71 | 51.7 | 96.1 | 75.9 |
UA | 58.1 | 83.2 | 83.3 | 76.8 | 68.9 | 81.1 | 93 | 81 | 66.5 | 20.3 | ||
BPV-C | PA | 43.3 | 90.3 | 72 | 70.9 | 81.1 | 49.2 | 68.4 | 70.1 | 45 | 97.9 | 76.7 |
UA | 54.8 | 83.5 | 83.7 | 72.8 | 67.4 | 91.7 | 99.4 | 76.2 | 74.6 | 71.4 |
Barley | Corn | Rapeseed | Sunflower | Winter Wheat | OA (%) | ||
---|---|---|---|---|---|---|---|
Bands-C | PA (%) | 29.3 | 94.7 | 90.2 | 76.7 | 94.3 | 88.6 |
UA (%) | 61.5 | 90.7 | 94.8 | 87.3 | 85.5 | ||
F1-score | 39.7 | 92.7 | 92.4 | 81.7 | 89.7 | ||
NDVI-C | PA (%) | 45.2 | 93.9 | 79.1 | 75.7 | 93.2 | 87.2 |
UA (%) | 67.8 | 89.9 | 93.2 | 84.8 | 84.3 | ||
F1-score | 54.3 | 91.9 | 85.6 | 80 | 88.5 | ||
FAPAR-C | PA (%) | 41.0 | 93.1 | 52.6 | 71.9 | 84.4 | 80.9 |
UA (%) | 58.7 | 88.1 | 69.2 | 82.6 | 74.1 | ||
F1-score | 48.3 | 90.5 | 59.8 | 76.9 | 78.9 | ||
LAI-C | PA (%) | 47.9 | 92.9 | 67.7 | 72.9 | 79.3 | 81.6 |
UA (%) | 57.1 | 88.8 | 70.3 | 80.1 | 77.5 | ||
F1-score | 54.1 | 90.8 | 68.9 | 76.3 | 78.4 | ||
FCOVER-C | PA (%) | 38.7 | 94.1 | 71.1 | 70.7 | 89.2 | 84.2 |
UA (%) | 68.5 | 87.9 | 84.3 | 86.1 | 78.3 | ||
F1-score | 49.4 | 90.9 | 77.1 | 77.6 | 83.4 | ||
BPV-C | PA (%) | 45.1 | 93.9 | 74.9 | 72.5 | 86.2 | 84.3 |
UA (%) | 63.5 | 88.7 | 85.0 | 82 | 80.3 | ||
F1-score | 52.8 | 91.2 | 79.6 | 76.9 | 83.1 |
4.3. Importance of the Date and of the Length of the Time Series
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hu, C.; Li, J.; Chen, N.; Guan, Q. An object model for integrating diverse remote sensing satellite sensors: A case study of Union Operation. Remote Sens. 2014, 6, 667–699. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sens. Environ. 2015, 156, 438–447. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Becker-Reshef, I.; Killough, B.D.; Justice, C.O. Meeting earth observation requirements for global agricultural monitoring: An evaluation of the revisit capabilities of current and planned moderate resolution optical earth observing missions. Remote Sens. 2015, 7, 1482–1503. [Google Scholar] [CrossRef]
- Wang, Y.C.; Feng, C.C.; Vu Duc, H. Integrating multi-sensor remote sensing data for land use/cover mapping in a tropical moutainous area in Northern Thailand. Geogr. Res. 2012, 50, 320–331. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar]
- Chen, J.M.; Black, T. Defining leaf area index for non-flat leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Asrar, G.; Fuchs, M.; Kanemasu, E.; Hatfield, J. Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron. J. 1984, 76, 300–306. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Richardson, A.; Wiegand, C.; Wanjura, D.; Dusek, D.; Steiner, J. Multisite analyses of spectral-biophysical data for sorghum. Remote Sens. Environ. 1992, 41, 71–82. [Google Scholar] [CrossRef]
- Duchemin, B.; Hadria, R.; Erraki, S.; Boulet, G.; Maisongrande, P.; Chehbouni, A.; Escadafal, R.; Ezzahar, J.; Hoedjes, J.; Kharrou, M.; et al. Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric. Water Manage. 2006, 79, 1–27. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.; Brazile, J.; Singh, R.; Schaepman, M.E. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. App. Earth Obs. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- McCallum, I.; Wagner, W.; Schmullius, C.; Shvidenko, A.; Obersteiner, M.; Fritz, S.; Nilsson, S. Satellite-based terrestrial production efficiency modeling. Carbon Balance Manag. 2009, 4, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Avissar, R.; Pielke, R.A. A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev. 1989, 117, 2113–2136. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Villa Pascual, D.; Dedieu, G. A Multi-Temporal and Multi-Spectral Method to Estimate Aerosol Optical Thickness over Land, for the Atmospheric Correction of FormoSat-2, LandSat, VENμS and Sentinel-2 Images. Remote Sens. 2015, 7, 2668–2691. [Google Scholar] [CrossRef]
- Hagolle, O.; Dedieux, G.; Mougenot, B.; Debaecker, V.; Duchemin, B. Correction of aerosol effects on multi-temporal images acquired with constant viewing angles: application to Formosat-2 images. Remote Sens. Environ. 2008, 112, 1689–1701. [Google Scholar] [CrossRef] [Green Version]
- Wenjuan, L.; Weiss, M.; Waldner, F.; Demarez, V.; Hagolle, O.; Baret, F. Deriving LAI, FAPAR essential climate variables and FCOVER from SPOT and LANDSAT sensors : evaluation of the consistency and comparison with ground measurements. Remote Sens. 2015. submitted. [Google Scholar]
- Weiss, M.; Baret, F. CAN-EYE V6.313 USER MANUAL; INRA-EmmaH: Avignon, France, 2014. [Google Scholar]
- Mougin, E.; Demarez, V.; Diawara, M.; Hiernaux, P.; Soumaguel, N.; Berg, A. Estimation of LAI, fAPAR and fCover of Sahel rangelands (Gourma, Mali). Agric. For. Meteorol. 2014, 198, 155–167. [Google Scholar] [CrossRef]
- Demarez, V.; Duthoit, S.; Baret, F.; Weiss, M.; Dedieu, G. Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agric. For. Meteorol. 2008, 148, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Defourny, P.; Kirches, G.; Brockmann, C.; Boettcher, M.; Peters, M.; Bontemps, S.; Lamarche, C.; Schlerf, M.; Santoro, M. Land Cover CCI : Product user Guide: Version 2; Université catholique de Louvain: Louvain-la-Neuve, Belgium, 2014. [Google Scholar]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; noz Marí, J.M.; Clevers, J.G.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 {LAI} estimation using parametric, non-parametric and physical retrieval methods - A comparison. ISPRS J. Photogramm. Remote Sens. 2015, in press. [Google Scholar] [CrossRef]
- Rivera, J.P.; Verrelst, J.; Delegido, J.; Veroustraete, F.; Moreno, J. On the Semi-Automatic Retrieval of Biophysical Parameters Based on Spectral Index Optimization. Remote Sens. 2014, 6, 4927–4951. [Google Scholar] [CrossRef]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- De Wit, A.; d’Andrimont, R. MOCCCASIN Comparaison of MERIS, MODIS and KMSS for Winter Wheat Growth Parameters Assessment; Project Report for MOCCCASIN consortium; Alterra: Wageningen, The Netherlands, 2012. [Google Scholar]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Nino, F.; Weiss, M.; Samain, O.; Roujean, J.; Leroy, M. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Part 1 : Principles of the algorithm. Remote Sens. Environ. 2007, 3, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Bacour, C.; Baret, F.; Béal, D.; Weiss, M.; Pavageau, K. Neural network estimation of LAI, fAPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sens. Environ. 2011, 79, 72–83. [Google Scholar] [CrossRef]
- Atzberger, C.; Darvishzadeh, R.; Immitzer, M.; Schlerf, M.; Skidmore, A.; le Maire, G. Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2015, in press. [Google Scholar] [CrossRef]
- Huemmrich, K. The GeoSail model: a simple addition to the SAIL model to describe discontinuous canopy reflectance. Remote Sens. Environ. 2001, 3, 423–431. [Google Scholar] [CrossRef]
- Fleming, S.W. Signal-to-noise ratios of geophysical and environmental time series. Environ. Eng. Geosci. 2010, 16, 389–399. [Google Scholar] [CrossRef]
- Duveiller, G.; Lopez-Lozano, R.; Cescatti, A. Exploiting the multi-angularity of the MODIS temporal signal to identify spatially homogeneous vegetation cover: A demonstration for agricultural monitoring applications. Remote Sens. Environ. 2015, 166, 61–77. [Google Scholar] [CrossRef]
- Jensen, J.R.; Garcia-Quijano, M.; Hadley, B.; Im, J.; Wang, Z.; Nel, A.L.; Teixeira, E.; Davis, B.A. Remote sensing agricultural crop type for sustainable development in South Africa. Geocarto Int. 2006, 21, 5–18. [Google Scholar] [CrossRef]
- Murthy, C.; Raju, P.; Badrinath, K. Classification of wheat crop with multi-temporal images: performance of maximum likelihood and artificial neural networks. Int. J. Remote Sens. 2003, 24, 4871–4890. [Google Scholar] [CrossRef]
- Civco, D.L. Artificial neural networks for land-cover classification and mapping. Int. J. Geogr. Inf. Sci. 1993, 7, 173–186. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the US Central Great Plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Mathur, A.; Foody, G.M. Crop classification by support vector machine with intelligently selected training data for an operational application. Int. J. Remote Sens. 2008, 29, 2227–2240. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 993–1001. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.; Townshend, J. An assessment of support vector machines for land cover classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Rogan, J.; Franklin, J.; Stow, D.; Miller, J.; Woodcock, C.; Roberts, D. Mapping land-cover modifications over large areas: A comparison of machine learning algorithms. Remote Sens. Environ. 2008, 112, 2272–2283. [Google Scholar] [CrossRef]
- Foody, G.M. Land cover classification by an artificial neural network with ancillary information. Int. J. Geogr. Inf. Syst. 1995, 9, 527–542. [Google Scholar] [CrossRef]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef]
- Ghimire, B.; Rogan, J.; Miller, J. Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sens. Lett. 2010, 1, 45–54. [Google Scholar] [CrossRef]
- Kotsiantis, S.; Pintelas, P. Combining bagging and boosting. Int. J. Comput. Intell. 2004, 1, 324–333. [Google Scholar]
- Breiman, L. Random forest. Machine Learning 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Vieira, M.A.; Formaggio, A.R.; Rennó, C.D.; Atzberger, C.; Aguiar, D.A.; Mello, M.P. Object Based Image Analysis and Data Mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens. Environ. 2012, 123, 553–562. [Google Scholar] [CrossRef]
- Stuckens, J.; Coppin, P.; Bauer, M. Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sens. Environ. 2000, 71, 282–296. [Google Scholar] [CrossRef]
- Dorren, L.K.; Maier, B.; Seijmonsbergen, A.C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. For. Ecol. Manage. 2003, 183, 31–46. [Google Scholar] [CrossRef]
- Dingle Robertson, L.; King, D.J. Comparison of pixel-and object-based classification in land cover change mapping. Int. J. Remote Sens. 2011, 32, 1505–1529. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Matton, N.; Sepulcre Canto, G.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An automated method for annual cropland mapping along the season for various agrosystems globally distributed using spatial and temporal high resolution time series. Remote Sens. 2015. submitted. [Google Scholar]
- Yan, G.; Mas, J.F.; Maathuis, B.; Xiangmin, Z.; Van Dijk, P. Comparison of pixel-based and object-oriented image classification approachesâĂŤa case study in a coal fire area, Wuda, Inner Mongolia, China. Int. J. Remote Sens. 2006, 27, 4039–4055. [Google Scholar] [CrossRef]
- Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing object-based and pixel-based classifications for mapping savannas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 884–893. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping. Remote Sens. 2015, 7, 8489–8515. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Foody, G.M. Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens. Environ. 2009, 113, 1658–1663. [Google Scholar] [CrossRef]
- Stehman, S. Estimating the kappa coefficient and its variance under stratified random sampling. Photogramm. Eng. Remote Sens. 1996, 62, 401–407. [Google Scholar]
- Agresti, A. Categorical Data Analysis. John Wiley and Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Fleiss, J.L.; Cohen, J.; Everitt, B. Large sample standard errors of kappa and weighted kappa. Psychol. Bull. 1969, 72, 323. [Google Scholar] [CrossRef]
- Rosenfield, G.H.; Fitzpatrick-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Nitze, I.; Barrett, B.; Cawkwell, F. Temporal optimization of image acquisition for land cover classification with Random Forest and {MODIS} time-series. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 136–146. [Google Scholar] [CrossRef]
- Ghosh, A.; Sharma, R.; Joshi, P. Random forest classification of urban landscape using Landsat archive and ancillary data: Combining seasonal maps with decision level fusion. Appl. Geogr. 2014, 48, 31–41. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- GCOS. Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC; GCOS-138 (GOOS-184, GTOS-76, WMO-TD/No. 1523); WMO: Geneva, Switzerland, 2004; pp. 1–24. [Google Scholar]
- Baret, F.; Neale, C.; Maltese, A. Biophysical vegetation variables retrieval from remote sensing observations. Proc. SPIE 2010, 7824, 17–19. [Google Scholar]
- Claverie, M.; Vermote, E.F.; Weiss, M.; Baret, F.; Hagolle, O.; Demarez, V. Validation of coarse spatial resolution {LAI} and {FAPAR} time series over cropland in southwest France. Remote Sens. Environ. 2013, 139, 216–230. [Google Scholar] [CrossRef]
- Zhao, J.; Li, J.; Liu, Q.; Fan, W.; Zhong, B.; Wu, S.; Yang, L.; Zeng, Y.; Xu, B.; Yin, G. Leaf Area Index Retrieval Combining HJ1/CCD and Landsat8/OLI Data in the Heihe River Basin, China. Remote Sens. 2015, 7, 6862–6885. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef]
- Richter, K.; Hank, T.B.; Vuolo, F.; Mauser, W.; D’Urso, G. Optimal exploitation of the Sentinel-2 spectral capabilities for crop leaf area index mapping. Remote Sens. 2012, 4, 561–582. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sens. Environ. 2004, 93, 53–67. [Google Scholar] [CrossRef]
- Atzberger, C.; Richter, K. Spatially constrained inversion of radiative transfer models for improved LAI mapping from future Sentinel-2 imagery. Remote Sens. Environ. 2012, 120, 208–218. [Google Scholar] [CrossRef]
- Koetz, B.; Baret, F.; Poilvé, H.; Hill, J. Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens. Environ. 2005, 95, 115–124. [Google Scholar] [CrossRef]
- Bach, H.; Mauser, W. Methods and examples for remote sensing data assimilation in land surface process modeling. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1629–1637. [Google Scholar] [CrossRef]
- Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Mace, D.; Pragnere, A.; Myneni, R.; Knyazikhin, Y.; Wang, L. Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem. Remote Sens. Environ. 2003, 84, 1–15. [Google Scholar] [CrossRef]
- Yin, G.; Li, J.; Liu, Q.; Fan, W.; Xu, B.; Zeng, Y.; Zhao, J. Regional Leaf Area Index Retrieval Based on Remote Sensing: The Role of Radiative Transfer Model Selection. Remote Sens. 2015, 7, 4604–4625. [Google Scholar] [CrossRef]
- Petitjean, F.; Inglada, J.; Gançarski, P. Satellite image time series analysis under time warping. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3081–3095. [Google Scholar] [CrossRef]
- Dusseux, P.; Corpetti, T.; Hubert-Moy, L.; Corgne, S. Combined Use of Multi-Temporal Optical and Radar Satellite Images for Grassland Monitoring. Remote Sens. 2014, 6, 6163–6182. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; Moreno, J.; Camps-Valls, G. Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS J. Photogramm. Remote Sens. 2013, 86, 157–167. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waldner, F.; Lambert, M.-J.; Li, W.; Weiss, M.; Demarez, V.; Morin, D.; Marais-Sicre, C.; Hagolle, O.; Baret, F.; Defourny, P. Land Cover and Crop Type Classification along the Season Based on Biophysical Variables Retrieved from Multi-Sensor High-Resolution Time Series. Remote Sens. 2015, 7, 10400-10424. https://doi.org/10.3390/rs70810400
Waldner F, Lambert M-J, Li W, Weiss M, Demarez V, Morin D, Marais-Sicre C, Hagolle O, Baret F, Defourny P. Land Cover and Crop Type Classification along the Season Based on Biophysical Variables Retrieved from Multi-Sensor High-Resolution Time Series. Remote Sensing. 2015; 7(8):10400-10424. https://doi.org/10.3390/rs70810400
Chicago/Turabian StyleWaldner, François, Marie-Julie Lambert, Wenjuan Li, Marie Weiss, Valérie Demarez, David Morin, Claire Marais-Sicre, Olivier Hagolle, Frédéric Baret, and Pierre Defourny. 2015. "Land Cover and Crop Type Classification along the Season Based on Biophysical Variables Retrieved from Multi-Sensor High-Resolution Time Series" Remote Sensing 7, no. 8: 10400-10424. https://doi.org/10.3390/rs70810400
APA StyleWaldner, F., Lambert, M. -J., Li, W., Weiss, M., Demarez, V., Morin, D., Marais-Sicre, C., Hagolle, O., Baret, F., & Defourny, P. (2015). Land Cover and Crop Type Classification along the Season Based on Biophysical Variables Retrieved from Multi-Sensor High-Resolution Time Series. Remote Sensing, 7(8), 10400-10424. https://doi.org/10.3390/rs70810400