High Capacity HEVC Video Hiding Algorithm Based on EMD Coded PU Partition Modes
"> Figure 1
<p>Example of quadtree partition structure.</p> "> Figure 2
<p>Prediction unit (PU) partition modes for intra-prediction.</p> "> Figure 3
<p>PU partition modes for inter-prediction.</p> "> Figure 4
<p>Code units (CU) structures and PU partition modes of the example slice. (<b>a</b>) is from ParkScene 1920 × 1080 and (<b>b</b>) is from Keiba 832 × 480.</p> "> Figure 5
<p>The distribution of CUs with different sizes. (<b>a</b>) CU distribution under high resolution; (<b>b</b>) CU distribution under low resolution.</p> "> Figure 5 Cont.
<p>The distribution of CUs with different sizes. (<b>a</b>) CU distribution under high resolution; (<b>b</b>) CU distribution under low resolution.</p> "> Figure 6
<p>Magnified coding tree units (CTU) in the bottom-right corner from <a href="#symmetry-11-01015-f004" class="html-fig">Figure 4</a>a.</p> "> Figure 7
<p>The points’ values in the 2-dimensional lattice.</p> "> Figure 8
<p>Subjective performance evaluation of the second P-slices from: (<b>a</b>) ParkScene 1920 × 1080; (<b>b</b>) Keiba 832 × 480. The clean slices without embedded information are laid on the first line, and slices with hidden information are placed in the second line.</p> "> Figure 9
<p>Comparison of distortion (RD) with Y. Yang’s paper ([<a href="#B33-symmetry-11-01015" class="html-bibr">33</a>]): (<b>a</b>) RD of BasketballDrive 1920 × 1080, Kimono 1920 × 1080 and Tennis 1920 × 1080; (<b>b</b>) RD of ChinaSpeed 1024 × 768, Keiba 832 × 480 and PartyScene 832 × 480.</p> "> Figure 9 Cont.
<p>Comparison of distortion (RD) with Y. Yang’s paper ([<a href="#B33-symmetry-11-01015" class="html-bibr">33</a>]): (<b>a</b>) RD of BasketballDrive 1920 × 1080, Kimono 1920 × 1080 and Tennis 1920 × 1080; (<b>b</b>) RD of ChinaSpeed 1024 × 768, Keiba 832 × 480 and PartyScene 832 × 480.</p> "> Figure 10
<p>Comparison of capacity (RC) with [<a href="#B33-symmetry-11-01015" class="html-bibr">33</a>]: (<b>a</b>) RC of BasketballDrive 1920 × 1080, Kimono 1920 × 1080 and Tennis 1920 × 1080; (<b>b</b>) RC of ChinaSpeed 1024 × 768, Keiba 832 × 480 and PartyScene 832 × 480.</p> "> Figure 11
<p>BRI comparison with Yang and Li ([<a href="#B32-symmetry-11-01015" class="html-bibr">32</a>]) and Yang et al. ([<a href="#B33-symmetry-11-01015" class="html-bibr">33</a>]).</p> ">
Abstract
:1. Introduction
2. EMD Encoding of PU Partition Modes
2.1. Overview of Prediction Units in HEVC
2.2. The Distribution of CUs with Different Sizes
3. The Proposed Hiding Algorithm
3.1. EMD Coding of PU Partition Mode
3.2. Information Hiding Algorithm
Algorithm 1. The embedding algorithm for one S-tuple group of 16 × 16 CUs with S = 3 |
Input: The 3-tuple 16 × 16 CU group array , where represents the mapping integer of PU partition mode in the 16 × 16 CU decided by HEVC according to Table 1. Hidden base 7 data ; |
Output: the modified 3-tuple 16 × 16 CU group array ; |
1. |
2. |
3. if then |
4. |
5. else if then |
6. |
7. else if then |
8. |
9. else if then |
10. |
11. else if then |
12. |
13. else if then |
14. |
15. end if |
Algorithm 2. The embedding algorithm for one S-tuple group of 8 × 8 CUs with S = 1 |
Input: The 1-tuple 8 × 8 CU group array , where represents the mapping integer of the PU partition mode in this 8 × 8 CU decided by HEVC according to Table 2. Hidden base 3 data ; |
Output: the modified 1-tuple 8 × 8 CU group array ; |
1. |
2. |
3. if then |
4. |
5. else if then |
6. |
7. end if |
4. Experimental Results
4.1. Configuration
4.2. Performance Evaluation
4.2.1. Subjective Visual Quality
4.2.2. Objective Performance
4.2.3. Comparative Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yuan, K.G.; Zhang, R.; Xin, X.U.; Niu, X.X.; Yang, Y.X. Design of steganography algorithm based on MPEG-4 coding scheme. J. Commun. 2009, 30, 48–53. [Google Scholar]
- Xiao, Z.; Chen, Z.; Zhang, X. Applications. Issues and solution on distortion drift in reversible video data hiding. Multimed Tools Appl. 2011, 52, 465–484. [Google Scholar]
- Esen, E.; Alatan, A.A. Robust Video Data Hiding Using Forbidden Zone Data Hiding and Selective Embedding. IEEE Trans. Circuits Syst. 2011, 21, 1130–1138. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Ma, X.J. Reversible Data Hiding Scheme Based On H.264/AVC without Distortion Drift. J. Softw. 2012, 7, 1059–1065. [Google Scholar] [CrossRef]
- Liu, Y.; Ju, L.; Hu, M.; Ma, X.; Zhao, H. A robust reversible data hiding scheme for H.264 without distortion drift. Neurocomputing 2015, 151, 1053–1062. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Hu, M.; Jia, Z.; Jia, S.; Zhao, H. A reversible data hiding method for H.264 with Shamir’s (t, n)-threshold secret sharing. Neurocomputing 2016, 188, 63–70. [Google Scholar] [CrossRef]
- Li, H. Research on Large Capacity H.264/AVC Video Information Hiding Algorithm in QDCT Domain. Master’s Thesis, Southwest Jiaotong University, Chengdu, Sichuan, China, 19 May 2017. [Google Scholar]
- Duan, N. Research on Robust Video Information Hiding Algorithm for Reducing H.264/AVC Distortion Drift. Master’s Thesis, Xi’an University of Technology, Xian, Shaanxi, China, May 2018. [Google Scholar]
- Fang, D.Y.; Chang, L.W. Data hiding for digital video with phase of motion vector. In Proceedings of the IEEE International Symposium on Circuits & Systems, Island of Kos, Greece, 21–24 May 2006; pp. 1422–1425. [Google Scholar]
- Kapotas, S.K.; Varsaki, E.E.; Skodras, A.N. Data Hiding in H. 264 Encoded Video Sequences. In Proceedings of the IEEE Workshop on Multimedia Signal Processing, Chania, Greece, 1–3 October 2007; pp. 373–376. [Google Scholar]
- Shanableh, T. Data Hiding in MPEG Video Files Using Multivariate Regression and Flexible Macroblock Ordering. IEEE Trans. Inf. Forensics Secur. 2012, 7, 455–464. [Google Scholar] [CrossRef]
- Jia, C. Research of Video Information Hiding Based on H.264. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, Sichuan, China, 28 June 2013. [Google Scholar]
- Yang, G.; Li, J.; He, Y.; Kang, Z. Communications. An information hiding algorithm based on intra-prediction modes and matrix coding for H.264/AVC video stream. AEU Int. J. Electron. Commun. 2011, 65, 331–337. [Google Scholar] [CrossRef]
- Xu, D.; Wang, J. Prediction mode modulated data-hiding algorithm for H.264/AVC. J. Real Time Image Process. 2012, 7, 205–214. [Google Scholar] [CrossRef]
- Zhou, G.; Wu, M. Information hiding algorithm based on H.264 intra prediction mode. Telecommun. Inf. 2014, 5, 44–47. [Google Scholar]
- Wei, F. Study on Information Hiding Based on Intra Prediction for Video. Master’s Thesis, Southwest Jiaotong University, Chengdu, Sichuan, China, 8 April 2015. [Google Scholar]
- Zhang, Y.; Zhang, M.; Niu, K.; Yang, X. Novel video steganographic algorithm based on modifying intra-prediction mode. J. Zhengzhou Univ. 2018, 50, 23–28. [Google Scholar]
- Xu, D.; Wang, R.; Shi, Y. Data Hiding in Encrypted H.264/AVC Video Streams by Codeword Substitution. IEEE Trans. Inf. Forensics Secur. 2014, 9, 596–606. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, X.; Zhang, C.; Jing, Z.J. Steganography Algorithm Based on Motion Vectors of H.264. J. Tianjin Univ. 2014, 47, 67–73. [Google Scholar]
- Chang, P.C.; Chung, K.L.; Chen, J.J.; Lin, C.H.; Lin, T.J. An error propagation free data hiding algorithm in HEVC intra-coded frames. In Proceedings of the Signal & Information Processing Association Summit & Conference, Kaohsiung, Taiwan, China, 29 October–1 November 2013. [Google Scholar]
- Chang, P.C.; Chung, K.L.; Chen, J.J.; Lin, C.H.; Lin, T.J. A DCT/DST-based error propagation-free data hiding algorithm for HEVC intra-coded frames. J. Vis. Commun. Image Represent. 2013, 25, 239–253. [Google Scholar] [CrossRef]
- Gui, F.; Xue, H. A Reversible Data Hiding Scheme for HEVC. In Proceedings of the 2017 10th International Symposium on Computational Intelligence and Design, Hangzhou, China, 9–10 December 2017. [Google Scholar]
- Liu, Y.; Liu, S.; Zhao, H.; Si, L. A new data hiding method for H.265/HEVC video streams without intra-frame distortion drift. Multimed. Tools Appl. 2018, 78, 6459–6486. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Feng, C.; Zhao, H. A Reversible Data Hiding Method Based on HEVC Without Distortion Drift. In Proceedings of the Intelligent Computing Methodologies: 13th International Conference, Liverpool, UK, 7–10 August 2017; pp. 613–624. [Google Scholar]
- Wang, J.; Wang, R.; Li, W.; Xu, D.; Yan, D. An information hiding algorithm for HEVC based on intra prediction. J. Optoelectron. Laser 2014, 25, 1578–1585. [Google Scholar]
- Wang, J.; Wang, R.; Li, W.; Xu, D.; Huang, M. A High-capacity Information Hiding Algorithm for HEVC Based on Intra Prediction Mode Intra-prediction in HEVC. J. Softw. 2014, 10, 8933–8943. [Google Scholar]
- Wang, J.; Wang, R.; Li, W.; Xu, D.; Xu, J. Video information hiding in intra prediction and block codes for HEVC. J.Optoelectron. Laser. 2015, 26, 942–950. [Google Scholar]
- Wang, J. Study on Information Hiding Algorithm Based on Intra Prediction Modes for HEVC Video. Master’s Thesis, Ningbo University, Ningbo, Zhejiang, China, 15 June 2015. [Google Scholar]
- Xu, J.; Wang, R.; Huang, M. An information hiding algorithm for hevc based on intra-prediction modes and Hamming. J. Compu. Inf. Syst. 2015, 11, 5587–5598. [Google Scholar]
- Qi, S.; Wang, R.; Pei, A.; Wang, B. An Information Hiding Algorithm for HEVC Based on Differences of Intra Prediction Modes. In Proceedings of the Cloud Computing and Security—2nd International Conference, Nanjing, China, 29–31 July 2016. [Google Scholar]
- Tew, Y.; Wong, K.S. Information hiding in HEVC standard using adaptive coding block size decision. In Proceedings of the IEEE International Conference on Image Processing, Paris, France, 27–30 October 2014. [Google Scholar]
- Yang, J.; Li, S. An efficient information hiding method based on motion vector space encoding for HEVC. Multimed. Tools Appl. 2018, 77, 11979–12001. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Xie, W.; Zhang, Z. High capacity and multilevel information hiding algorithm based on pu partition modes for HEVC videos. Multimed. Tools Appl. 2019, 78, 8423–8446. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S. Efficient Steganographic Embedding by Exploiting Modification Direction. IEEE Commun. Lett. 2006, 10, 781–783. [Google Scholar] [CrossRef]
Modes | ||||||||
Integers | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Modes | ||||
Integers | 0 | 1 | 2 | 3 |
Sequence | QP | PSNR(Clean) | PSNR(Hiding) | BRI | Capacity |
---|---|---|---|---|---|
BasketballDrive | 26 | 39.9836 | 39.9576 | 0.0209 | 2252 |
1920 × 1080 | 32 | 38.1135 | 38.0798 | 0.0226 | 926 |
38 | 35.9492 | 35.9018 | 0.0063 | 350 | |
BQTerrace | 26 | 36.9362 | 36.9268 | 0.0148 | 7578 |
1920 × 1080 | 32 | 34.6276 | 34.6540 | 0.0059 | 977 |
38 | 32.1492 | 32.1668 | 0.0025 | 141 | |
Kimono | 26 | 41.0887 | 41.1022 | 0.0112 | 1702 |
1920 × 1080 | 32 | 38.3209 | 38.3373 | 0.0140 | 790 |
38 | 35.5277 | 35.5761 | 0.0150 | 313 | |
ParkScene | 26 | 38.9657 | 38.9486 | 0.0162 | 4783 |
1920 × 1080 | 32 | 36.1111 | 36.1024 | 0.0108 | 1396 |
38 | 33.4029 | 33.4146 | 0.0056 | 280 | |
Tennis | 26 | 40.5594 | 40.5679 | 0.0155 | 3226 |
1920 × 1080 | 32 | 38.0411 | 38.0633 | 0.0110 | 1254 |
38 | 35.5259 | 35.5689 | 0.0022 | 419 | |
ChinaSpeed | 26 | 41.2659 | 41.1669 | 0.0410 | 2656 |
1024 × 768 | 32 | 36.9406 | 36.8492 | 0.0272 | 1427 |
38 | 33.1107 | 33.0431 | 0.0143 | 651 | |
Keiba | 26 | 38.7105 | 38.8770 | −0.0191 | 1148 |
832 × 480 | 32 | 35.5753 | 35.7236 | −0.0165 | 601 |
38 | 32.6737 | 32.8271 | −0.0330 | 199 | |
Racehorses | 26 | 37.0262 | 36.9092 | 0.0462 | 2558 |
832 × 480 | 32 | 33.6613 | 33.5330 | 0.0392 | 1282 |
38 | 30.5866 | 30.5369 | 0.0399 | 547 | |
PartyScene | 26 | 36.5585 | 36.5190 | −0.0368 | 2032 |
832 × 480 | 32 | 32.6259 | 32.5839 | −0.0153 | 1070 |
38 | 28.9680 | 28.9322 | −0.0069 | 243 |
Sequence | PSNR(Hiding) | PSNR (Ref. [32]) | Capacity | Capacity (Ref. [32]) |
---|---|---|---|---|
BasketballDrive | 39.9576 | 40.1833 | 2252 | 82 |
1920 × 1080 | ||||
BQTerrace | 36.9268 | 37.6133 | 7578 | 26 |
1920 × 1080 | ||||
Kimono | 41.1022 | 39.7700 | 1702 | 80 |
1920 × 1080 | ||||
ParkScene | 38.9486 | 37.8867 | 4783 | 62 |
1920 × 1080 | ||||
Tennis | 40.5679 | 40.0667 | 3226 | 108 |
1920 × 1080 | ||||
ChinaSpeed | 41.1669 | 38.4333 | 2656 | 84 |
1024 × 768 | ||||
Keiba | 38.8770 | 38.9333 | 1148 | 26 |
832 × 480 | ||||
Racehorses | 36.9092 | 35.5000 | 2558 | 118 |
832 × 480 | ||||
PartyScene | 36.5190 | 34.0667 | 2032 | 78 |
832 × 480 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Meng, L.; Jiang, X.; Li, Z. High Capacity HEVC Video Hiding Algorithm Based on EMD Coded PU Partition Modes. Symmetry 2019, 11, 1015. https://doi.org/10.3390/sym11081015
Li Z, Meng L, Jiang X, Li Z. High Capacity HEVC Video Hiding Algorithm Based on EMD Coded PU Partition Modes. Symmetry. 2019; 11(8):1015. https://doi.org/10.3390/sym11081015
Chicago/Turabian StyleLi, Zhonghao, Laijin Meng, Xinghao Jiang, and Zhaohong Li. 2019. "High Capacity HEVC Video Hiding Algorithm Based on EMD Coded PU Partition Modes" Symmetry 11, no. 8: 1015. https://doi.org/10.3390/sym11081015
APA StyleLi, Z., Meng, L., Jiang, X., & Li, Z. (2019). High Capacity HEVC Video Hiding Algorithm Based on EMD Coded PU Partition Modes. Symmetry, 11(8), 1015. https://doi.org/10.3390/sym11081015