Magneto-Optic Surface Plasmon Resonance Ti/Au/Co/Au/Pc Configuration and Sensitivity
"> Figure 1
<p>Comparison of high-angle X-ray diffractometer profiles for the as-deposited (denoted by blue) and annealed (denoted by red) Ti/Au/Co/Au multilayers.</p> "> Figure 2
<p>Comparison of X-ray reflection profiles of as-deposited (denoted by blue) and annealed (denoted by red). The blue horizontal arrow shows the direction of increasing roughness. The vertical black arrow shows the position of the critical angle (2θ<sub>c</sub>)—the angle above which total internal reflection takes place.</p> "> Figure 3
<p>Magnetization (M-H) characteristics of the as-deposited (denoted by blue circles) and annealed (denoted by red circles) samples plotted against the magnetic, H field. The inset shows the enlarged view of the M-H curves measured at H ±300 Oe.</p> "> Figure 4
<p>The plot of normalized sensitivity recorded for three different alcohol samples with an increasing refractive index with respect to the water medium. (<b>a</b>) Sensor without a protective layer and (<b>b</b>–<b>d</b>) sensor with a protective layer, increased from 5 to 15 nm. The vertical black arrows indicate the position of reflectivity minima observed for a pure water medium. The red horizontal arrows indicate the direction of peak shift with refractive index change.</p> "> Figure 5
<p>Schematic of a fabricated sensor configuration (bottom). Shown on the top left is the side view of the fabricated sensor studied using SEM (FEI Apreo SEM, ThermoFisher Scientific, Hillsboro, OR, USA). Enlarged view is shown on the top right. The orientation of magnetic spin is shown by a large thick arrow that is parallel to the Co/Au interface. A positive direction of applied H field is assumed to be along the direction shown by the long thick arrow (i.e., +y-axis).</p> ">
Abstract
:1. Introduction
2. Microstructure Study
3. Magnetic Characterization
4. MO-SPR Sensitivity and Protective Layer
5. Materials and Methods
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Rizal, C.; Niraula, B.; Lee, H.H.W. Bio-magnetoplasmonics, emerging biomedical technologies and beyond. J. Nanomed. Res. 2016, 3, 00059–00065. [Google Scholar] [CrossRef]
- Rizal, C.; Moa, B.; Niraula, B.B. Ferromagnetic multilayers: Magnetoresistance, magnetic anisotropy, and beyond. Magnetochemistry 2016, 2, 22. [Google Scholar] [CrossRef]
- Kushwaha, M.S.; Halevi, P. Magnetoplasmons in thin films in the Voigt configuration. Phys. Rev. B 1987, 36, 5960–5967. [Google Scholar] [CrossRef]
- Diaz-Valencia, B.; Mejía-Salazar, J.; de Oliveira, O.N., Jr.; Porras-Montenegro, N.; Albella, P. Enhanced transverse magneto-optical Kerr effect in magnetoplasmonic crystals for the design of highly sensitive plasmonic (bio) sensing platforms. ACS Omega 2017, 2, 7682–7685. [Google Scholar] [CrossRef] [PubMed]
- González-Díaz, J.; Sepúlveda, B.; García-Martín, A.; Armelles, G. Cobalt dependence of the magneto-optical response in magnetoplasmonic nanodisks. Appl. Phys. Lett. 2010, 97, 043114. [Google Scholar] [CrossRef] [Green Version]
- Armelles, G.; Cebollada, A.; Garcia-Martan, A.; González, M.U. Magnetoplasmonics: Combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 2013, 1, 2–21. [Google Scholar] [CrossRef]
- Manera, M.G.; Ferreiro-Vila, E.; Garcia-Martin, J.M.; Garcia-Martin, A.; Rella, R. Enhanced antibody recognition with a magneto-optic surface plasmon resonance (MO-SPR) sensor. Biosens. Bioelectron. 2014, 58, 114–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaioannou, E.T.; Karoutsos, V.; Angelakeris, M.; Valassiades, O.; Fumagalli, P.; Flevaris, N.K.; Poulopoulos, P. Magnetic, magneto-optic and magnetotransport properties of nanocrystalline Co/Au multilayers with ultrathin Au interlayers. J. Nanosci. Nanotechnol. 2008, 8, 4323–4327. [Google Scholar] [CrossRef] [PubMed]
- Regatos, D.; Sepúlveda, B.; Fariña, D.; Carrascosa, L.G.; Lechuga, L.M. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing. Opt. Express 2011, 19, 8336–8346. [Google Scholar] [CrossRef] [PubMed]
- Herreño-Fierro, C.A.; Patino, E.J.; Armelles, G.; Cebollada, A. Surface sensitivity of optical and magneto-optical and ellipsometric properties in magnetoplasmonic nanodisks. Appl. Phys. Lett. 2016, 108, 021109. [Google Scholar] [CrossRef]
- Špringer, T.; Ermini, M.L.; Špačková, B.; Jabloňků, J.; Homola, J. Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: Size matters. Anal. Chem. 2014, 86, 10350–10356. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-J.; Lee, K.-H.; Chen, T.-T. Sensitivity enhancement of magneto-optic surface plasmon resonance sensors with noble/ferromagnetic metal heterostructure. Laser Phys. 2014, 24, 036001. [Google Scholar] [CrossRef]
- Pellegrini, G.; Mattei, G. High-performance magneto-optic surface plasmon resonance sensor design: An optimization approach. Plasmonics 2014, 9, 1457–1462. [Google Scholar] [CrossRef]
- Piliarik, M.; Homola, J. Surface plasmon resonance (SPR) sensors: Approaching their limits? Opt. Express 2009, 17, 16505–16517. [Google Scholar] [CrossRef] [PubMed]
- Slavík, R.; Homola, J. Ultrahigh resolution long range surface plasmon-based sensor. Sens. Actuators B 2007, 123, 10–12. [Google Scholar] [CrossRef]
- Sepúlveda, B.; Calle, A.; Lechuga, L.M.; Armelles, G. Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt. Lett. 2006, 31, 1085–1087. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.; Di Natale, C. A contribution on some basic definitions of sensors properties. IEEE Sens. J. 2001, 1, 183–190. [Google Scholar] [CrossRef]
- Rizal, C.; Pisana, S.; Hrvoic, I. Improved magneto-optic surface plasmon resonance biosensors. Photonics 2018, 5, 15. [Google Scholar] [CrossRef]
- Konopsky, V.N.; Basmanov, D.V.; Alieva, E.V.; Dolgy, D.I.; Olshansky, E.D.; Sekatskii, S.K.; Dietler, G. Registration of long-range surface plasmon resonance by angle-scanning feedback and its implementation for optical hydrogen sensing. New J. Phys. 2009, 11, 063049. [Google Scholar] [CrossRef] [Green Version]
- Rizal, C.; Pisana, S.; Hrvoic, I.; Fullerton, E. Microstructure and magneto-optical surface plasmon resonance of Co/Au multilayers. J. Phys. Commun. 2018, 2, 055010. [Google Scholar] [CrossRef] [Green Version]
- Rizal, C.; Fullerton, E. Perpendicular magnetic anisotropy and microstructure properties of nanoscale Co/Au multilayers. J. Phys. D Appl. Phys. 2017, 50, 355002. [Google Scholar] [CrossRef]
- Rizal, C.; Moa, B.; Wingert, J.; Shpyrko, O.G. Magnetic anisotropy and magnetoresistance properties of Co/Au multilayers. IEEE Trans. Magn. 2015, 51, 1–6. [Google Scholar] [CrossRef]
- RefractiveIndex.INFO—Refractive Index Database. Available online: https://refractiveindex.Info/ (accessed on 8 June 2018).
- Fullerton, E.E.; Schuller, I.K.; Vanderstraeten, H.; Bruynseraede, Y. Structural refinement of superlattices from x-ray diffraction. Phys. Rev. B 1992, 45, 9292. [Google Scholar] [CrossRef]
- Heinrich, B.; Bland, J.A.C. Ultrathin Magnetic Structures II: Measurement Techniques and Novel Magnetic Properties; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Ignatyeva, D.O.; Knyazev, G.A.; Kapralov, P.O.; Dietler, G.; Sekatskii, S.K.; Belotelov, V.I. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Sci. Rep. 2016, 6, 28077. [Google Scholar] [CrossRef] [PubMed]
- Björck, M.; Andersson, G. Genx: An extensible x-ray reflectivity refinement program utilizing differential evolution. J. Appl. Crystallogr. 2007, 40, 1174–1178. [Google Scholar] [CrossRef]
- SCHOTT Advanced Optics. Available online: https://www.schott.com/advanced_optics/english/download/ (accessed on 2 June 2018).
- Johnson, P.; Christy, R. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B Condens. Matter 1974, 9, 5056. [Google Scholar] [CrossRef]
- Ciddor, P.E. Refractive index of air: New equations for the visible and near infrared. Appl. Opt. 1996, 35, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Hale, G.M.; Querry, M.R. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Rheims, J.; Köser, J.; Wriedt, T. Refractive-index measurements in the near-IR using an abbe refractometer. Meas. Sci. Technol. 1997, 8, 601. [Google Scholar] [CrossRef]
- Moutzouris, K.; Papamichael, M.; Betsis, S.C.; Stavrakas, I.; Hloupis, G.; Triantis, D. Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B 2014, 116, 617–622. [Google Scholar] [CrossRef]
- Sultanova, N.; Kasarova, S.; Nikolov, I. Dispersion properties of optical polymers. Acta Phys. Pol. A 2009, 116, 585. [Google Scholar] [CrossRef]
Probing Media (Δn at λ = 785 nm) | Incident Angle, θ° and the Numbers within the Bracket Indicate the Thickness of the Protective Layer (tpc), in nm. | Sensitivity, SMOSPR [%/RIU] | Detection Level, D = σ/SMOSPR (RIU) | |||
---|---|---|---|---|---|---|
water–ethanol (0.0281) | 41.51° (0) | 42.15° (5) | 42.75° (10) | 43.48° (15) | 5.5 × 104 | 0.90 × 10−6 |
water–propanol (0.0492) | 41.60° (0) | 42.20° (5) | 42.85° (10) | 43.60° (15) | 3.2 × 104 | 1.56 × 10−6 |
water–pentanol (0.0732) | 41.70° (0) | 42.30° (5) | 42.95° (10) | 43.72° (15) | 2.0 × 104 | 2.50 × 10−6 |
Materials | Symbol | Refractive Index, n | Extinction Coeff., k | Real Part, ε1 | Imaginary Part, ε2 | Literature Source |
---|---|---|---|---|---|---|
Optical Glass | BK-7 | 1.5111 | 9.22 × 10−9 | 2.30 | 2.95 × 10−9 | [28] |
Titanium | Ti | 3.0937 | 4.01 | −6.51 | 24.811 | [29] |
Gold | Au | 0.14891 | 4.78 | −22.86 | 1.4245 | [29] |
Cobalt | Co | 2.4580 | 4.75 | −16.49 | 23.337 | [29] |
Air | Air | 1.000275 | - | 1.0055 | - | [30] |
Water | H2O | 1.3296 | 1.39 × 10−7 | 1.7678 | 3.69 × 10−9 | [31] |
Ethanol | C2H5OH | 1.3577 | - | 1.8433 | - | [32] |
Propanol | C3H7OH | 1.3788 | - | 1.9011 | - | [33] |
Pentanol | C5H11OH | 1.4028 | - | 1.9678 | - | [33] |
Polycarbonate | (C16H14O3)n | 1.5713 | - | 2.51 | - | [34] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizal, C. Magneto-Optic Surface Plasmon Resonance Ti/Au/Co/Au/Pc Configuration and Sensitivity. Magnetochemistry 2018, 4, 35. https://doi.org/10.3390/magnetochemistry4030035
Rizal C. Magneto-Optic Surface Plasmon Resonance Ti/Au/Co/Au/Pc Configuration and Sensitivity. Magnetochemistry. 2018; 4(3):35. https://doi.org/10.3390/magnetochemistry4030035
Chicago/Turabian StyleRizal, Conrad. 2018. "Magneto-Optic Surface Plasmon Resonance Ti/Au/Co/Au/Pc Configuration and Sensitivity" Magnetochemistry 4, no. 3: 35. https://doi.org/10.3390/magnetochemistry4030035
APA StyleRizal, C. (2018). Magneto-Optic Surface Plasmon Resonance Ti/Au/Co/Au/Pc Configuration and Sensitivity. Magnetochemistry, 4(3), 35. https://doi.org/10.3390/magnetochemistry4030035