Identifying Crystal Structure of Halides of Strontium and Barium Perovskite Compounds with EXPO2014 Software
"> Figure 1
<p>Steps for synthesizing the strontium and barium ethylamine chloride perovskites.</p> "> Figure 2
<p>Crystal structure visualization by EXPO2014 of barium perovskite (CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub>BaCl<sub>3</sub>) at different temperatures: (<b>a</b>) at 90 °C, (<b>b</b>) at 100 °C, and (<b>c</b>) at 110 °C, with an orthorhombic structure. The structural models shown were drawn with VESTA software (Ver. 3.5.8).</p> "> Figure 3
<p>Crystal structure visualization by EXPO2014 of strontium perovskite (CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub>SrCl<sub>3</sub>) at different temperatures: (<b>a</b>) at 90 °C, (<b>b</b>) at 100 °C, and (<b>c</b>) at 110 °C, with a tetragonal structure. The structural models shown were drawn with VESTA software.</p> "> Figure 4
<p>Experimental X-ray powder diffraction pattern of barium perovskite with an orthorhombic structure at 90, 100, and 110 °C.</p> "> Figure 5
<p>Experimental X-ray powder diffraction pattern of strontium perovskite with a tetragonal structure at 90, 100, and 110 °C.</p> "> Figure 6
<p>FTIR spectra for the barium perovskites (CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub>BaCl<sub>3</sub>) at different temperatures.</p> "> Figure 7
<p>FTIR spectra for the strontium perovskites (CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub>SrCl<sub>3</sub>) at different temperatures.</p> "> Figure 8
<p>Absorption spectra of CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub>BaCl<sub>3</sub> at 90, 100, and 110 °C.</p> "> Figure 9
<p>Absorption spectra of CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub>SrCl<sub>3</sub> at 90, 100, and 110 °C.</p> "> Figure 10
<p>PL emission spectra of CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub>BaCl<sub>3</sub> at 90, 100, and 110 °C.</p> "> Figure 11
<p>PL emission spectra of CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub>SrCl<sub>3</sub> at 90, 100, and 110 °C.</p> "> Figure 12
<p>Normalized UV–Visible spectra of CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub>BaCl<sub>3</sub> perovskite at 90, 100, and 110 °C. Inset: corresponding Tauc plots.</p> "> Figure 13
<p>Normalized UV–Visible spectra of CH<sub>3</sub>CH<sub>2</sub>NH<sub>3</sub>SrCl<sub>3</sub> perovskite at 90, 100, and 110 °C. Inset: corresponding Tauc plots.</p> "> Figure 14
<p>Band gap structure and energy levels of barium perovskite.</p> "> Figure 15
<p>Band gap structure and energy levels of strontium perovskite.</p> ">
Abstract
:1. Introduction
- (a)
- Indexing the Bragg reflections.
- (b)
- Determining the space group.
- (c)
- Resolving the crystal structure.
- (d)
- Refining the structural model.
2. Materials and Methods
2.1. Synthesis of Ethylammonium Chloride
2.2. Strontium and Barium Perovskite Synthesis
2.3. Experimental Techniques
2.4. Crystal Structure Resolution
3. Results and Discussion
3.1. Structural Analysis
3.2. Structural Analysis of Experimental Patterns by EXPO2014
3.3. Chemical Characterization
Chemical Characterization by FT-IR
3.4. Photo-Electronic Properties
3.4.1. Photoluminescence (PL)
3.4.2. UV–Vis Spectroscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, N.G. Perovskite solar cells: An emerging photovoltaic technology. Mater. Today 2015, 18, 65–72. [Google Scholar] [CrossRef]
- Roy, P.; Sinha, N.K.; Tiwari, S.; Khare, A. A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Sol. Energy 2020, 198, 665–688. [Google Scholar] [CrossRef]
- Rajagopal, A.; Yang, Z.; Jo, S.B.; Braly, I.L.; Liang, P.W.; Hillhouse, H.W.; Jen AK, Y. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 2017, 29, 1702140. [Google Scholar] [CrossRef]
- Ju, D.; Jiang, X.; Xiao, H.; Chen, X.; Hu, X.; Tao, X. Narrow band gap and high mobility of lead-free perovskite single crystal Sn-doped MA 3 Sb 2 I 9. J. Mater. Chem. A 2018, 6, 20753–20759. [Google Scholar] [CrossRef]
- Li, J.; Xia, R.; Qi, W.; Zhou, X.; Cheng, J.; Chen, Y.; Zhang, X. Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. J. Power Sources 2021, 485, 229313. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, H.; Liu, R.; Sun, Y.; Huang, W. Composite encapsulation enabled superior comprehensive stability of perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 27277–27285. [Google Scholar] [CrossRef] [PubMed]
- Niclas. Energy Band Gap of Solar Cells. Sinovoltaics (Hong Kong Office). 2024. Available online: https://sinovoltaics.com/learning-center/solar-cells/energy-band-gap-of-solar-cells/ (accessed on 4 December 2024).
- Jacak, J.E.; Jacak, W.A. Routes for metallization of perovskite solar cells. Materials 2022, 15, 2254. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Aharon, S.; Cohen, B.E.; Etgar, L. Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell. J. Phys. Chem. C 2014, 118, 17160–17165. [Google Scholar] [CrossRef]
- Li, C.; Soh KC, K.; Wu, P. Formability of ABO3 perovskites. J. Alloys Compd. 2004, 372, 40–48. [Google Scholar] [CrossRef]
- Park, N.G.; Miyasaka, T.; Grätzel, M. Organic-Inorganic Halide Perovskite Photovoltaics; Springer: Cham, Switzerland, 2016; pp. 1–366. [Google Scholar]
- Glazer, A.M. The classification of tilted octahedra in perovskites. Acta Crystallographica. Sect. B Struct. Crystallogr. Cryst. Chem. 1972, 28, 3384–3392. [Google Scholar] [CrossRef]
- Akhtar, J.; Aamir, M.; Sher, M. Organometal lead halide perovskite. In Perovskite Photovoltaics; Academic Press: Cambridge, MA, USA, 2018; pp. 25–42. [Google Scholar]
- Cardona, R.; Landínez-Téllez, D.A.; Roa-Rojas, J. Theoretical and experimental study of the electronic, crystalline, morphologic, compositional, magnetic and dielectric properties of the Sr2DyNbO6 material. Dyna 2017, 84, 88–94. [Google Scholar] [CrossRef]
- Thomson, S. Observing Phase Transitions in a Halide Perovskite Using Temperature Dependent Photoluminescence Spectroscopy; Edinburgh Instruments: Livingston, UK, 2018. [Google Scholar]
- Hoefler, S.F.; Trimmel, G.; Rath, T. Progress on lead-free metal halide perovskites for photovoltaic applications: A review. Monatshefte Für Chem. Chem. Mon. 2017, 148, 795–826. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Jacobsson, T.J.; Pazoki, M.; Hagfeldt, A.; Edvinsson, T. Goldschmidt’s rules and strontium replacement in lead halogen perovskite solar cells: Theory and preliminary experiments on CH3NH3SrI3. J. Phys. Chem. C 2015, 119, 25673–25683. [Google Scholar] [CrossRef]
- Karim, A.T.; Hossain, M.S.; Khan MK, R.; Kamruzzaman, M.; Rahman, M.A.; Rahman, M.M. Solution-processed mixed halide CH3NH3PbI3− xClx thin films prepared by repeated dip coating. J. Mater. Sci. 2019, 54, 11818–11826. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, K. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655–689. [Google Scholar] [CrossRef] [PubMed]
- Noel, N.K.; Stranks, S.D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.A.; Snaith, H.J. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068. [Google Scholar] [CrossRef]
- Kieslich, G.; Sun, S.; Cheetham, A.K. Solid-state principles applied to organic–inorganic perovskites: New tricks for an old dog. Chem. Sci. 2014, 5, 4712–4715. [Google Scholar] [CrossRef]
- Wang, M.; Wang, W.; Ma, B.; Shen, W.; Liu, L.; Cao, K.; Huang, W. Lead-free perovskite materials for solar cells. Nano-Micro Lett. 2021, 13, 62. [Google Scholar] [CrossRef]
- Massuyeau, F.; Broux, T.; Coulet, F.; Demessence, A.; Mesbah, A.; Gautier, R. Perovskite or Not Perovskite? A Deep-Learning Approach to Automatically Identify New Hybrid Perovskites from X-ray Diffraction Patterns. Adv. Mater. 2022, 34, 2203879. [Google Scholar] [CrossRef] [PubMed]
- Ziletti, A.; Kumar, D.; Scheffler, M.; Ghiringhelli, L.M. Insightful classification of crystal structures using deep learning. Nat. Commun. 2018, 9, 2775. [Google Scholar] [CrossRef]
- Oviedo, F.; Ren, Z.; Sun, S.; Settens, C.; Liu, Z.; Hartono NT, P.; Buonassisi, T. Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. Npj Comput. Mater. 2019, 5, 60. [Google Scholar] [CrossRef]
- Mardones Huala, N. Cálculo de Probabilidad de Formación de Perovskitas Basadas en Lantano, Ingeniero Civil Mecanico; Universidad de Chile: Santiago de Chile, Chile, 2022. [Google Scholar]
- Ray, D.; Clark, C.; Pham, H.Q.; Borycz, J.; Holmes, R.J.; Aydil, E.S.; Gagliardi, L. Computational study of structural and electronic properties of lead-free CsMI3 perovskites (M= Ge, Sn, Pb, Mg, Ca, Sr, and Ba). J. Phys. Chem. C 2018, 122, 7838–7848. [Google Scholar] [CrossRef]
- Altomare, A.; Corriero, N.; Cuocci, C.; Falcicchio, A.; Moliterni, A.; Rizzi, R. EXPO software for solving crystal structures by powder diffraction data: Methods and application. Cryst. Res. Technol. 2015, 50, 737–742. [Google Scholar] [CrossRef]
- David, W.I.; Shankland, K.; McCusker, L.B.; Baerlocher, C. (Eds.) Structure Determination from Powder Diffraction Data; OUP Oxford: Oxford, UK, 2006; Volume 13. [Google Scholar]
- Ali, R.; Hou, G.J.; Zhu, Z.G.; Yan, Q.B.; Zheng, Q.R.; Su, G. Predicted lead-free perovskites for solar cells. Chem. Mater. 2018, 30, 718–728. [Google Scholar] [CrossRef]
- Okasha, A.; Abdelghany, A.M.; Marzouk, S.Y. The influence of Ba2+ and Sr2+ ions with the Dy3+ ions on the optical properties of lead borate glasses: Experimental and Judd–Ofelt comparative study. J. Mater. Res. Technol. 2020, 9, 59–66. [Google Scholar] [CrossRef]
- Cuocci, C.; Corriero, N.; Dell’Aera, M.; Falcicchio, A.; Rizzi, R.; Altomare, A. Direct space approach in action: Challenging structure solution of microcrystalline materials using the EXPO software. Comput. Mater. Sci. 2022, 210, 111465. [Google Scholar] [CrossRef]
- Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.G.G.; Rizzi, R. The Dual-Space Resolution Bias Correction in EXPO2010; Oldenbourg Wissenschaftsverlag: Munich, Germany, 2010; pp. 548–551. [Google Scholar]
- Altomare, A.; Burla, M.C.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni AG, G.; Polidori, G. Early finding of preferred orientation: Applications to direct methods. J. Appl. Crystallogr. 1996, 29, 341–345. [Google Scholar] [CrossRef]
- Altomare, A.; Cuocci, C.; Moliterni, A.; Rizzi, R. Solving Crystal Structures Using Reciprocal-Space Methods; Wiley Online Library: Hoboken, NJ, USA, 2019. [Google Scholar]
- Altomare, A.; Giacovazzo, C.; Moliterni AG, G.; Rizzi, R. Direct methods optimised for solving crystal structure by powder diffraction data: Limits, strategies, and prospects. J. Res. Natl. Inst. Stand. Technol. 2004, 109, 125–132. [Google Scholar] [CrossRef]
- Altomare, A.; Foadi, J.; Giacovazzo, C.; Moliterni AG, G.; Burla, M.C.; Polidori, G. Solving crystal structures from powder data. IV. The use of the Patterson information for estimating the| F|’s. J. Appl. Crystallogr. 1998, 31, 74–77. [Google Scholar] [CrossRef]
- Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni AG, G.; Rizzi, R. Powder diffraction: The new automatic least-squares Fourier recycling procedure in EXPO2005. J. Appl. Crystallogr. 2006, 39, 558–562. [Google Scholar] [CrossRef]
- Altomare, A.; Cuocci, C.; Moliterni, A.; Rizzi, R. Resolution bias modification (RBM). Int. Tables Crystallogr. 2019, H. ch. 4.2, 405–406. [Google Scholar]
- Altomare, A.; Cuocci, C.; Giacovazzo, C.; Moliterni, A.; Rizzi, R. COVMAP: A new algorithm for structure model optimization in the EXPO package. J. Appl. Crystallogr. 2012, 45, 789–797. [Google Scholar] [CrossRef]
- Cheng, F.; Zhang, J.; Pauporté, T. Chlorides, other Halides, and Pseudo-Halides as Additives for the Fabrication of Efficient and Stable Perovskite Solar Cells. ChemSusChem 2021, 14, 3665–3692. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Pathak, S.; Sakai, N.; Stergiopoulos, T.; Nayak, P.K.; Noel, N.K.; Snaith, H.J. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 2015, 6, 10030. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, P.S.; Herron, N.; Guise, W.E.; Page, K.; Cheng, Y.Q.; Milas, I.; Crawford, M.K. Structures, phase transitions and tricritical behavior of the hybrid perovskite methyl ammonium lead iodide. Sci. Rep. 2016, 6, 35685. [Google Scholar] [CrossRef] [PubMed]
- Aebli, M.; Piveteau, L.; Nazarenko, O.; Benin, B.M.; Krieg, F.; Verel, R.; Kovalenko, M.V. Lead-halide scalar couplings in 207Pb NMR of APbX3 perovskites (A = Cs, methylammonium, formamidinium; X = Cl, Br, I). Sci. Rep. 2020, 10, 8229. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Cong, S.; Lu, Z.; Lou, Y.; He, L.; Li, J.; Zou, G. Enhanced perovskite solar cell performance via defect passivation with ethylamine alcohol chlorides additive. J. Power Sources 2019, 428, 82–87. [Google Scholar] [CrossRef]
- Oku, T. Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells. Sol. Cells-New Approaches Rev. 2015, 1, 77–92. [Google Scholar]
- Howlader, A.H.; Uddin, A. Progress and Challenges of Chloride–Iodide Perovskite Solar Cells: A Critical Review. Nanomanufacturing 2023, 3, 177–216. [Google Scholar] [CrossRef]
- Qiao, W.C.; Yang, J.; Dong, W.; Yang, G.; Bao, Q.; Huang, R.; Wang, X.L.; Yao, Y.F. Metastable alloying structures in MAPbI3− x Cl x crystals. NPG Asia Mater. 2020, 12, 68. [Google Scholar] [CrossRef]
- Cao, D.H.; Guo, P.; Mannodi-Kanakkithodi, A.; Wiederrecht, G.P.; Gosztola, D.J.; Jeon, N.; Martinson, A.B. Charge Transfer Dynamics of Phase-Segregated Halide Perovskites: CH3NH3PbCl3 and CH3NH3PbI3 or (C4H9NH3) 2 (CH3NH3) n− 1Pb n I3 n+ 1 Mixtures. ACS Appl. Mater. Interfaces 2019, 11, 9583–9593. [Google Scholar] [CrossRef]
- Altomare, A.; Capitelli, F.; Corriero, N.; Cuocci, C.; Falcicchio, A.; Moliterni, A.; Rizzi, R. The Rietveld refinement in the EXPO software: A powerful tool at the end of the elaborate crystal structure solution pathway. Crystals 2018, 8, 203. [Google Scholar] [CrossRef]
- Yin, W.J.; Yang, J.H.; Kang, J.; Yan, Y.; Wei, S.H. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A 2015, 3, 8926–8942. [Google Scholar] [CrossRef]
- Owen, A.J. The Diode-Array Advantage in UV-VIS Spectroscopy; Publication No12; Hewlett Packard: Palo Alto, CA, USA, 1998; pp. 5594–8912. [Google Scholar]
- Skoog, D.A.; West, D.M.; Holler, J. Fundamentos de Química Analítica; Reverté: Barcelona, Spain, 2020; Volume 2, pp. 651–670, 722–729, 760–768. [Google Scholar]
- Magdalena, G.F.M. Apuntes para espectrometría de radiación ultravioleta visible (UV-Vis). Mater. De Apoyo Para Asign. Temas Sel. De Quim. (Analítica) 2016, 4–21. [Google Scholar]
- Dordevic, V.; Antic, Z.; Nikolic, M.G.; Dramicanin, M.D. The concentration quenching of photoluminescence in Eu3+-doped La2O3. J. Res. Phys. 2013, 37, 47. [Google Scholar] [CrossRef]
- Leng, J.; Wang, T.; Tan, Z.K.; Lee, Y.J.; Chang, C.C.; Tamada, K. Tuning the emission wavelength of lead halide perovskite NCs via size and shape control. ACS Omega 2021, 7, 565–577. [Google Scholar] [CrossRef]
- Ali, M.L.; Khan, M. Narrowing band gap and enhanced optoelectronic properties in methylammonium lead chloride perovskite under pressure. Phys. B Condens. Matter 2024, 676, 415688. [Google Scholar] [CrossRef]
- Gualdrón-Reyes, A.F.; Macias-Pinilla, D.F.; Masi, S.; Echeverría-Arrondo, C.; Agouram, S.; Muñoz-Sanjosé, V.; Rodríguez-Pereira, J.; Macak, J.M.; Mora-Seró, I. Engineering Sr-doping for enabling long-term stable FAPb 1− x Sr x I 3 quantum dots with 100% photoluminescence quantum yield. J. Mater. Chem. C 2021, 9, 1555–1566. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, L.; Yan, H.; Guo, S.; Wang, S.; Wang, M.; Jin, K. Bandgap narrowing in Bi-doped CH3NH3PbCl3 perovskite single crystals and thin films. J. Phys. Chem. C 2017, 121, 17436–17441. [Google Scholar] [CrossRef]
- Yajima, T.; Hikita, Y.; Minohara, M.; Bell, C.; Mundy, J.A.; Kourkoutis, L.F.; Hwang, H.Y. Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces. Nat. Commun. 2015, 6, 6759. [Google Scholar] [CrossRef]
- Boix, P.P.; Nonomura, K.; Mathews, N.; Mhaisalkar, S.G. Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today 2014, 17, 16–23. [Google Scholar] [CrossRef]
- Yang, C.; Hu, W.; Liu, J.; Han, C.; Gao, Q.; Mei, A.; Zhou, Y.; Guo, F.; Han, H. Achievements, challenges, and future prospects for industrialization of perovskite solar cells. Light Sci. Appl. 2024, 13, 227. [Google Scholar] [CrossRef] [PubMed]
Cell Content | Cell Parameters | Space Group | Number of Reflections NR | Crystalline System | ||
---|---|---|---|---|---|---|
CH3CH2NH3SrCl3 at 90 °C | α = 90.00 β = 90.00 γ = 90.00 | 515.4 | P-4 21 m | 159 | 1.089 | Tetragonal |
CH3CH2NH3SrCl3 at 100 °C | α = 90.00 β = 90.00 γ = 90.00 | 358.5 | P 42 21 2 | 900 | 1.089 | Tetragonal |
CH3CH2NH3SrCl3 at 110 °C | α = 90.00 β = 90.00 γ = 90.00 | 135.48 | P-4 | 62 | 1.089 | Tetragonal |
Cell Content | Cell Parameters | Space Group | Number of Reflections NR | Crystalline System | ||
---|---|---|---|---|---|---|
CH3CH2NH3BaCl3 at 90 °C | a b = c = α = 90.00 β = 90.00 γ = 90.00 | 577.6 | P n c 2 | 396 | 1.08944 | Orthorhombic |
CH3CH2NH3BaCl3 at 100 °C | a = b = c = α = 90.00 β = 90.00 γ = 90.00 | 273.6 | P m c 21 | 156 | 1.08944 | Orthorhombic |
CH3CH2NH3BaCl3 at 110 °C | a b c α = 90.00 β = 90.00 γ = 90.00 | 766.87 | P 2 2 21 | 407 | 1.08944 | Orthorhombic |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez Franco, J.A.; García Murillo, A.; Carrillo Romo, F.d.J.; Romero Ibarra, I.C.; Cervantes Tobón, A. Identifying Crystal Structure of Halides of Strontium and Barium Perovskite Compounds with EXPO2014 Software. Materials 2025, 18, 58. https://doi.org/10.3390/ma18010058
Perez Franco JA, García Murillo A, Carrillo Romo FdJ, Romero Ibarra IC, Cervantes Tobón A. Identifying Crystal Structure of Halides of Strontium and Barium Perovskite Compounds with EXPO2014 Software. Materials. 2025; 18(1):58. https://doi.org/10.3390/ma18010058
Chicago/Turabian StylePerez Franco, Jorge A., Antonieta García Murillo, Felipe de J. Carrillo Romo, Issis C. Romero Ibarra, and Arturo Cervantes Tobón. 2025. "Identifying Crystal Structure of Halides of Strontium and Barium Perovskite Compounds with EXPO2014 Software" Materials 18, no. 1: 58. https://doi.org/10.3390/ma18010058
APA StylePerez Franco, J. A., García Murillo, A., Carrillo Romo, F. d. J., Romero Ibarra, I. C., & Cervantes Tobón, A. (2025). Identifying Crystal Structure of Halides of Strontium and Barium Perovskite Compounds with EXPO2014 Software. Materials, 18(1), 58. https://doi.org/10.3390/ma18010058