Bio-Based Polyurethane Networks Derived from Liquefied Sawdust
<p>Changes in hydroxyl number depending on the liquefaction reaction temperature during heating.</p> "> Figure 2
<p>Water content in bio-polyols depending on the time of the liquefaction process.</p> "> Figure 3
<p>Bio-polyols flow curves.</p> "> Figure 4
<p>Bio-polyols viscosity curves.</p> "> Figure 5
<p>FTIR spectra of bio-polyols.</p> "> Figure 6
<p>The TGA and DTG curves of the polyurethane resins.</p> "> Figure 7
<p><span class="html-italic">Tan δ</span> and storage modulus (E′) of polyurethane resins.</p> ">
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Liquefaction of Oak and Alder Wood Sawdust
2.3. Manufacturing of Polyurethane Resins with High Bio-Polyol Content
2.4. Determination of Polyols Properties
2.5. Characterization of Polyurethanes
3. Results and Discussion
3.1. Characterization of Bio-Based Polyols Properties
3.2. FTIR Analysis of Bio-Polyols
3.3. Thermal Properties of Polyurethane Resin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gama, N.V.; Soares, B.; Freire, C.S.R.; Silva, R.; Neto, C.P.; Barros-Timmons, A.; Ferreira, A. Bio-based polyurethane foams toward applications beyond thermal insulation. Mater. Des. 2015, 76, 77–85. [Google Scholar] [CrossRef]
- Yue, D.; Oribayo, O.; Rempel, G.L.; Pan, Q. Liquefaction of waste pine wood and its application in the synthesis of a flame retardant polyurethane foam. RSC Adv. 2017, 7, 30334–30344. [Google Scholar] [CrossRef] [Green Version]
- Hejna, A.; Kosmela, P.; Kirpluks, M.; Cabulis, U. Structure, Mechanical, Thermal and Fire Behavior Assessments of Environmentally Friendly Crude Glycerol-Based Rigid Polyisocyanurate Foams. J. Polym. Environ. 2018, 26, 1854–1868. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xu, C.C.; Yuan, Z.; Wei, Q. Synthesis of bio-based polyurethane foams with liquefied wheat straw: Process optimization. Biomass Bioenergy 2018, 111, 134–140. [Google Scholar] [CrossRef]
- Kong, X.; Liu, G.; Curtis, J.M. Characterization of canola oil based polyurethane wood adhesives. Int. J. Adhes. Adhes. 2011, 31, 559–564. [Google Scholar] [CrossRef]
- Somani, K.; Kansara, S.; Parmar, R.; Patel, N. High solids polyurethane coatings from castor-oil-based polyester-polyols. Int. J. Polym. Mater. Polym. Biomater. 2004, 53, 283–293. [Google Scholar] [CrossRef]
- Gaikwad, M.S.; Gite, V.V.; Mahulikar, P.P.; Hundiwale, D.G.; Yemul, O.S. Eco-friendly polyurethane coatings from cottonseed and karanja oil. Prog. Org. Coatings 2015, 86, 164–172. [Google Scholar] [CrossRef]
- Ni, B.; Yang, L.; Wang, C.; Wang, L.; Finlow, D. Synthesis and thermal properties of soybean oil-based waterborne polyurethane coatings. J. Therm. Anal. Calorim. 2010, 100, 239–246. [Google Scholar] [CrossRef]
- Wei, Y.; Cheng, F.; Li, H.; Yu, J. Synthesis and properties of polyurethane resins based on liquefied wood. J. Appl. Polym. Sci. 2004, 92, 351–356. [Google Scholar] [CrossRef]
- Trovati, G.; Sanches, E.A.; De Souza, S.M.; dos Santos, A.L.; Neto, S.C.; Mascarenhas, Y.P.; Chierice, G.O. Rigid and semi rigid polyurethane resins: A structural investigation using DMA, SAXS and Le Bail method. J. Mol. Struct. 2014, 1075, 589–593. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Kalogiannis, K.G.; Iliopoulou, E.F.; Michailof, C.M.; Pilavachi, P.A.; Lappas, A.A. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis 2014, 105, 143–150. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Lee, W.; Lin, M. Preparation and application of polyurethane adhesives made from polyhydric alcohol liquefied Taiwan acacia and China fir. J. Appl. Polym. Sci. 2008, 109, 23–31. [Google Scholar] [CrossRef]
- Mori, R. Inorganic-organic hybrid biodegradable polyurethane resin derived from liquefied Sakura wood. Wood Sci. Technol. 2015, 49, 507–516. [Google Scholar] [CrossRef]
- Lee, W.; Kuo, E.-S.; Chao, C.-Y.; Kao, Y.-P. Properties of polyurethane (PUR) films prepared from liquefied wood (LW) and ethylene glycol (EG). Holzforschung 2015, 69, 547–554. [Google Scholar] [CrossRef]
- Lee, W.-J.; Chao, C.-Y. Effect of containing polyhydric alcohol liquefied wood on the properties of thermoplastic polyurethane resins. Eur. J. Wood Wood Prod. 2018, 76, 1745–1752. [Google Scholar] [CrossRef]
- Li, H.; Feng, S.; Yuan, Z.; Wei, Q.; Xu, C.C. Highly efficient liquefaction of wheat straw for the production of bio-polyols and bio-based polyurethane foams. Ind. Crops Prod. 2017, 109, 426–433. [Google Scholar] [CrossRef]
- Chen, F.; Lu, Z. Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products. J. Appl. Polym. Sci. 2009, 111, 508–516. [Google Scholar] [CrossRef]
- Lee, S.-H.; Yoshioka, M.; Shiraishi, N. Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. J. Appl. Polym. Sci. 2000, 78, 319–325. [Google Scholar] [CrossRef]
- Abdel Hakim, A.A.; Nassar, M.; Emam, A.; Sultan, M. Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Mater. Chem. Phys. 2011, 129, 301–307. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, J.; Zhao, J.; Tu, S. Liquefaction of bamboo shoot shell for the production of polyols. Bioresour. Technol. 2014, 153, 147–153. [Google Scholar] [CrossRef]
- Kržan, A.; Kunaver, M. Microwave heating in wood liquefaction. J. Appl. Polym. Sci. 2006, 101, 1051–1056. [Google Scholar] [CrossRef]
- Kobayashi, M.; Asano, T.; Kajiyama, M.; Tomita, B. Analysis on residue formation during wood liquefaction with polyhydric alcohol. J. Wood Sci. 2004, 50, 407–414. [Google Scholar] [CrossRef]
- Daneshvar, S.; Behrooz, R.; Najafi, S.K.; Sadeghi, G.M.M. Characterization of Polyurethane Wood Adhesive Prepared from Liquefied Sawdust by Ethylene Carbonate. BioResources 2019, 14, 796–815. [Google Scholar] [CrossRef]
- Zhang, J.; Hori, N.; Takemura, A. Optimization of agricultural wastes liquefaction process and preparing bio- based polyurethane foams by the obtained polyols. Ind. Crops Prod. 2019, 138, 111455. [Google Scholar] [CrossRef]
- Pan, H.; Zheng, Z.; Hse, C.Y. Microwave-assisted liquefaction of wood with polyhydric alcohols and its application in preparation of polyurethane (PU) foams. Eur. J. Wood Wood Prod. 2012, 70, 461–470. [Google Scholar] [CrossRef]
- Yao, Y.; Yoshioka, M.; Shiraishi, N. Water-absorbing polyurethane foams from liquefied starch. J. Appl. Polym. Sci. 1996, 60, 1939–1949. [Google Scholar] [CrossRef]
- Demirbas, A. Conversion of black alder Alnus glutinosa L. in supercritical solvents. Energy Sources A Recovery Util. Environ. Eff. 2016, 38, 1393–1399. [Google Scholar] [CrossRef]
- Derbyshire, F.; Jagtoyen, M. Activated carbons from yellow poplar and white oak by H3PO4, activation. Pergamon 1998, 36, 1085–1097. [Google Scholar]
- Wang, K.; Kim, K.H.; Brown, R.C. Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem. 2014, 16, 727–735. [Google Scholar] [CrossRef]
- Kosmela, P.; Gosz, K.; Kazimierski, P.; Hejna, A.; Haponiuk, J.T.; Pizsczyk, Ł. Chemical structures, rheological and physical properties of biopolyols prepared via solvothermal liquefaction of Enteromorpha and Zostera marina biomass. Cellulose 2019, 26, 5893–5912. [Google Scholar] [CrossRef] [Green Version]
- Gosz, K.; Kowalkowska-Zedler, D.; Haponiuk, J.; Piszczyk, Ł. Liquefaction of alder wood as the source of renewable and sustainable polyols for preparation of polyurethane resins. Wood Sci. Technol. 2019, 54, 103–121. [Google Scholar] [CrossRef]
- Amran, U.A.; Zakaria, S.; Chia, C.H.; Roslan, R.; Jaafar, S.N.S.; Salleh, K.M. Polyols and rigid polyurethane foams derived from liquefied lignocellulosic and cellulosic biomass. Cellulose 2019, 26, 3231–3246. [Google Scholar] [CrossRef]
- Zhang, H.R.; Pang, H.; Zhang, L.; Chen, X.; Liao, B. Biodegradability of Polyurethane Foam from Liquefied Wood Based Polyols. J. Polym. Environ. 2013, 21, 329–334. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Wan, Y.; Lei, H.; Yu, F.; Chen, P.; Lin, X.; Liu, Y.; Ruan, R. Liquefaction of corn stover using industrial biodiesel glycerol. Int. J. Agric. Biol. Eng. 2009, 2, 32–40. [Google Scholar] [CrossRef]
- Krishnan, J.M.; Deshpande, A.P.; Kumar, P.B.S. (Eds.) Rheology of Complex Fluids; Springer: Cham, Switzerland, 2010. [Google Scholar] [CrossRef]
- Parcheta, P.; Datta, J. Structure-rheology relationship of fully bio-based linear polyester polyols for polyurethanes—Synthesis and investigation. Polym. Test. 2018, 67, 110–121. [Google Scholar] [CrossRef]
- Hu, S.; Wan, C.; Li, Y. Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw. Bioresour. Technol. 2013, 103, 227–233. [Google Scholar] [CrossRef]
- Björn, A.; de La Monja, P.S.; Karlsson, A.; Ejlertsson, J.; Svensson, B.H. Rheological Characterization. In Biogass; InTech: Rijeka, Croatia, 2012; pp. 64–76. [Google Scholar]
- Collier, W.E.; Schultz, T.P.; Kalasinsky, V.F. Infrared Study of Lignin: Reexamination of Aryl-Alkyl Ether C—O Stretching Peak Assignments. Holzforschung 1992, 46, 523–528. [Google Scholar] [CrossRef]
- Sun, J.X.; Mao, F.C.; Sun, X.F. Comparative Study of Hemicelluloses Isolated with Alkaline Peroxide from Lignocellulosic Materials. J. Wood Chem. Technol. 2007, 24, 239–262. [Google Scholar] [CrossRef]
- Chaikumpollert, O.; Methacanon, P.; Suchiva, K. Structural elucidation of hemicelluloses from Vetiver grass. Carbohydr. Polym. 2014, 57, 191–196. [Google Scholar] [CrossRef]
- Xu, F.; Sun, J.X.; Liu, C.F.; Sun, R.C. Comparative study of alkali- and acidic organic solvent-soluble hemicellulosic polysaccharides from sugarcane bagasse. Carbohydr. Res. 2006, 341, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Meilan, A.; Goodman, A.M.; Baron, M.G.; Gonzalez-Rodriguez, J. A specific case in the classification of woods by FTIR and chemometric: Discrimination of Fagales from Malpighiales. Cellulose 2014, 21, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Ruan, X.; Cheng, X.; Lü, Q. Liquefaction of lignin by polyethyleneglycol and glycerol. Bioresour. Technol. 2011, 102, 3581–3583. [Google Scholar] [CrossRef]
- Sequeiros, A.; Serrano, L.; Briones, R.; Labidi, J. Lignin Liquefaction Under Microwave Heating. Appl. Polym. 2013, 130, 3292–3298. [Google Scholar] [CrossRef]
- Zhang, Y.; Ikeda, A.; Hori, N.; Takemura, A.; Ono, H.; Yamada, T. Characterization of liquefied product from cellulose with phenol in the presence of sulfuric acid. Bioresour. Technol. 2006, 97, 313–321. [Google Scholar] [CrossRef]
- Heredia-Guerrero, J.A.; Benítez, J.J.; Domínguez, E.; Bayer, I.S.; Cingolani, R.; Athanassiou, A.; Heredia, A. Infrared and Raman spectroscopic features of plant cuticles: A review. Front. Plant Sci. 2014, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Javni, I.; Petrovic, Z.S.; Guo, A.; Fuller, R. Thermal stability of polyurethanes based on vegetable oils. J. Appl. Polym. Sci. 2000, 77, 1723–1734. [Google Scholar] [CrossRef]
- Khairudin; Pramono, E.; Utomo, S.B.; Wulandari, V.; Zahrotul, A.; Clegg, F. The effect of polyethylene glycol Mw 400 and 600 on stability of Shellac Waxfree. J. Phys. Conf. Ser. 2016, 776, 012054. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Cheng, F.; Li, H.; Yu, J. Properties and microstructure of polyurethane resins from liquefied wood. J. Appl. Polym. Sci. 2005, 95, 1175–1180. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, N.; Feng, M. Polyurethane foams derived from liquefied mountain pine beetle-infested barks. J. Appl. Polym. Sci. 2012, 123, 2849–2858. [Google Scholar] [CrossRef]
- Lu, Y.; Larock, R.C. Soybean-Oil-Based Waterborne Polyurethane Dispersions: Effects of Polyol Functionality and Hard Segment Content on Properties. Biomacromolecules 2008, 9, 3332–3340. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Biomass | Solvent |
---|---|---|
AG | Adler wood | glycerol |
AGP | glycerol: poly(ethylene glycol) | |
AP | poly(ethylene glycol) | |
OG | Oakwood | glycerol |
OGP | glycerol: poly(ethylene glycol) | |
OP | poly(ethylene glycol) |
Sample Name | NCO:OH | |
---|---|---|
AG_PU | OG_PU | 1:1 |
AGP_PU | OGP_PU | |
AP_PU | OP_PU | |
AG_1.2PU | OG_1.2PU | 1.2:1 |
AGP_1.2PU | OGP_1.2PU | |
AP_1.2PU | OP_1.2PU |
Sample | Reaction Temperature (°C) | Hydroxyl Number (mg KOH/g) | Biomass Conversion (%) |
---|---|---|---|
120 | 815 | 68 | |
AG | 150 | 770 | 92 |
170 | 612 | 82 | |
120 | 723 | 82 | |
AGP | 150 | 643 | 97 |
170 | 320 | 98 | |
120 | 324 | 70 | |
AP | 150 | 238 | 80 |
170 | 127 | 87 | |
120 | 813 | 68 | |
OG | 150 | 736 | 95 |
170 | 709 | 92 | |
120 | 732 | 90 | |
OGP | 150 | 532 | 94 |
170 | 352 | 97 | |
120 | 267 | 59 | |
OP | 150 | 215 | 65 |
170 | 114 | 72 |
Bio-Polyol Symbol | The Herschel–Bulkley Linear Functions | ||||
---|---|---|---|---|---|
Function | τ0 [Pa] | K [Pa·sn] | n [−] | R2 | |
AG_150 | y = 2.7857·x0.9891 | 0 | 2.7857 | 0.9891 | 0.9982 |
AGP_150 | y = 0.8171·x1.0339 | 0 | 0.8171 | 1.0339 | 0.9996 |
AP_150 | y = 33.6707 + 9.8791·x0.7356 | 33.6707 | 9.8791 | 0.7356 | 0.9839 |
OG_150 | y = 2.6809·x0.9753 | 0 | 2.6809 | 0.9753 | 0.9968 |
OGP_150 | y = 0.8246·x1.0343 | 0 | 0.8246 | 1.0343 | 0.9998 |
OP_150 | y = 81.1781 + 15.8788·x0.7344 | 81.1781 | 15.8788 | 0.7344 | 0.8638 |
Sample Name | Mass Loss (wt%) | Residue at 600 °C (wt%) | Tmax1 | Tmax2 | ||
---|---|---|---|---|---|---|
2 | 5 | 10 | ||||
Temperature (°C) | ||||||
AG_PU | 108 | 165 | 197 | 15.8 | 209 | 380 |
AGP_PU | 121 | 180 | 208 | 17.0 | 214 | 406 |
AP_PU | 185 | 265 | 301 | 23.2 | 318 | 399 |
OG_PU | 103 | 192 | 236 | 20.1 | 308 | 397 |
OGP_PU | 185 | 230 | 272 | 20.7 | 329 | 412 |
OP_PU | 234 | 289 | 315 | 24.4 | 349 | 405 |
Sample | Tg (°C) | E′ (MPa) at 25 °C |
---|---|---|
AG_PU | –34.9 | 839.9 |
AG_1.2PU | –42.3 | 651.6 |
OG_PU | −52.3 | 505.1 |
0G_1.2PU | −36.1 | 671.1 |
AGP_PU | −43.5 | 609.8 |
AGP_1.2PU | −47.1 | 339.9 |
OGP_PU | −48.5 | 665.3 |
OGP_1.2PU | −49.7 | 351.8 |
AP_PU | −51.8 | 114.9 |
AP_1.2PU | −47.9 | 62.4 |
OP_PU | −45.2 | 358.4 |
OP_1.2PU | −54.6 | 232.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gosz, K.; Tercjak, A.; Olszewski, A.; Haponiuk, J.; Piszczyk, Ł. Bio-Based Polyurethane Networks Derived from Liquefied Sawdust. Materials 2021, 14, 3138. https://doi.org/10.3390/ma14113138
Gosz K, Tercjak A, Olszewski A, Haponiuk J, Piszczyk Ł. Bio-Based Polyurethane Networks Derived from Liquefied Sawdust. Materials. 2021; 14(11):3138. https://doi.org/10.3390/ma14113138
Chicago/Turabian StyleGosz, Kamila, Agnieszka Tercjak, Adam Olszewski, Józef Haponiuk, and Łukasz Piszczyk. 2021. "Bio-Based Polyurethane Networks Derived from Liquefied Sawdust" Materials 14, no. 11: 3138. https://doi.org/10.3390/ma14113138
APA StyleGosz, K., Tercjak, A., Olszewski, A., Haponiuk, J., & Piszczyk, Ł. (2021). Bio-Based Polyurethane Networks Derived from Liquefied Sawdust. Materials, 14(11), 3138. https://doi.org/10.3390/ma14113138