Spatial Non-Stationarity of Influencing Factors of China’s County Economic Development Base on a Multiscale Geographically Weighted Regression Model
<p>Study area.</p> "> Figure 2
<p>Spatial distribution pattern of county economies in China: (<b>a</b>) The spatial distribution of GDP in China at the county level; (<b>b</b>) the spatial clustering results of GDP in China at the county level.</p> "> Figure 3
<p>Scatter plot of three models’ residuals. (<b>a</b>) OLS; (<b>b</b>) GWR; (<b>c</b>) MGWR.</p> "> Figure 4
<p>Box plots of the three models’ residuals.</p> "> Figure 5
<p>Spatial distribution of residuals of different models. (<b>a</b>) Spatial distribution of residuals of OLS model; (<b>b</b>) spatial distribution of residuals of GWR model; (<b>c</b>) spatial distribution of residuals of MGWR model.</p> "> Figure 6
<p>Optimal bandwidths generated by MGWR and GWR and standard deviations of parameter estimates of MGWR.</p> "> Figure 7
<p>The spatial distribution of factors affecting the distribution of county economic development in China. (<b>a</b>) TUD (bandwidth = 433); (<b>b</b>) CORP (bandwidth = 280); (<b>c</b>) REALTY (bandwidth = 178); (<b>d</b>) ROAD (bandwidth = 159); (<b>e</b>) PUB (bandwidth = 406); (<b>f</b>) CLAND (bandwidth = 68).</p> "> Figure 8
<p>Box plots of the spatial coefficients of REALTY, ROAD, and CLAND on five urban agglomerations in China. (<b>a</b>) REALTY; (<b>b</b>) ROAD; (<b>c</b>) CLAND.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Variables Selection and Processing
2.2.1. Natural Factors
2.2.2. Social Media Factors
2.2.3. Business Factors
2.2.4. Infrastructure Factors
2.2.5. Land Use Factors
2.3. Methods
2.3.1. Geographically Weighted Regression (GWR) Model
2.3.2. Multiscale Geographically Weighted Regression (MGWR) Model
3. Results and Discussion
3.1. Spatial Pattern of GDP in China
3.2. Spatial Variation of Factors Influencing County-Level GDP
3.2.1. Model Comparison between OLS, GWR, and MGWR
3.2.2. The Spatial Scale Effect regarding Optimized Bandwidths
3.2.3. Spatial Variation of Coefficients from the MGWR Model
4. Comparison of the Economic Development of Major Urban Agglomerations in China
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lesage, J.P. A Spatial Econometric Examination of China’s Economic Growth. Ann. GIS 1999, 5, 143–153. [Google Scholar] [CrossRef]
- Liang, L.; Chen, M.; Luo, X.; Xian, Y. Changes pattern in the population and economic gravity centers since the Reform and Opening up in China: The widening gaps between the South and North. J. Clean. Prod. 2021, 310, 127379. [Google Scholar] [CrossRef]
- Lin, B.; Zhou, Y. Measuring the green economic growth in China: Influencing factors and policy perspectives. Energy 2022, 241, 122518. [Google Scholar] [CrossRef]
- Xie, H.J.; Wei, W. A spatial econometric analysis of county economic growth: A case study of 108 counties in Shandong province. In Proceedings of the International Conference on Management Science & Engineering, Islamabad, Pakistan, 11–14 November 2013. [Google Scholar]
- Sun, F.; Liu, H.; Wang, Z. Evaluation research on jiangsu green economy development capability: A case study of Xuzhou. IOP Conf. Series: Earth Environ. Sci. 2018, 113, 012211. [Google Scholar] [CrossRef]
- Niu, T.; Chen, Y.; Yuan, Y. Measuring urban poverty using multi-source data and a random forest algorithm: A case study in Guangzhou. Sustain. Cities Soc. 2020, 54, 102014. [Google Scholar] [CrossRef]
- Jokanović, B.; Lalic, B.; Milovančević, M.; Simeunović, N.; Marković, D. Economic development evaluation based on science and patents. Phys. A Stat. Mech. its Appl. 2017, 481, 141–145. [Google Scholar] [CrossRef]
- Shi, K.; Chang, Z.; Chen, Z.; Wu, J.; Yu, B. Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: A case study of Chongqing, China. J. Clean. Prod. 2020, 255, 120245. [Google Scholar] [CrossRef]
- McArthur, D.P.; Thorsen, I.; Ubøe, J. Employment, Transport Infrastructure, and Rural Depopulation: A New Spatial Equilibrium Model. Environ. Plan. A Econ. Space 2014, 46, 1652–1665. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.; Pan, J. China’s City Network Structural Characteristics Based on Population Flow during Spring Festival Travel Rush: Empirical Analysis of “Tencent Migration” Big Data. J. Urban Plan. Dev. 2020, 146, 04020018. [Google Scholar] [CrossRef]
- Pan, J.; Lai, J. Spatial pattern of population mobility among cities in China: Case study of the National Day plus Mid-Autumn Festival based on Tencent migration data. Cities 2019, 94, 55–69. [Google Scholar] [CrossRef]
- Zhao, N.; Cao, G.; Zhang, W.; Samson, E.L.; Chen, Y. Remote sensing and social sensing for socioeconomic systems: A comparison study between nighttime lights and location-based social media at the 500 m spatial resolution. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102058. [Google Scholar] [CrossRef]
- Huang, Z.; Li, S.; Gao, F.; Wang, F.; Lin, J.; Tan, Z. Evaluating the performance of LBSM data to estimate the gross domestic product of China at multiple scales: A comparison with NPP-VIIRS nighttime light data. J. Clean. Prod. 2021, 328, 129558. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, L.; Zhang, B.; Xu, G.; Liu, J. Understanding the pattern and mechanism of spatial concentration of urban land use, population and economic activities: A case study in Wuhan, China. Geo Spat. Inf. Sci. 2021, 24, 678–694. [Google Scholar] [CrossRef]
- Zhang, J.; He, X.; Yuan, X.-D. Research on the relationship between Urban economic development level and urban spatial structure—A case study of two Chinese cities. PLoS ONE 2020, 15, e0235858. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Peng, W. Detecting influences of factors on GDP density differentiation of rural poverty changes. Struct. Chang. Econ. Dyn. 2021, 56, 141–151. [Google Scholar] [CrossRef]
- Zhang, Y. Dynamic Research on Total Factor Productivity of China’s Ocean Economy. J. Coast. Res. 2019, 98, 227–230. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, L.; Sun, H.; Liu, W. Comprehensive Evaluation and Main Influencing Factors of Sustainable Development of Marine Economy Based on GRA and LWCI Models. J. Coast. Res. 2020, 104, 566–574. [Google Scholar] [CrossRef]
- Ikechukwu, N.C.; Anyanwokoro, M. Investigating the Impact of the Capital Market Operations on a Developing Economy: The Nigerian Experience (1983–2016). South Asian J. Soc. Stud. Econ. 2019, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Sun, H.; Agyeman, F.O.; Heydari, M.; Jameel, A.; Khan, H.S.U.D. Analysis of Potential Factors Influencing China’s Regional Sustainable Economic Growth. Appl. Sci. 2021, 11, 10832. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C. Local Forms of Spatial Analysis. Geogr. Anal. 1999, 31, 340–358. [Google Scholar] [CrossRef]
- Windle, M.J.S.; Rose, G.A.; Devillers, R.; Fortin, M.-J. Exploring spatial non-stationarity of fisheries survey data using geographically weighted regression (GWR): An example from the Northwest Atlantic. ICES J. Mar. Sci. 2009, 67, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Fotheringham, A.S.; Charlton, M.; Brunsdon, C. The geography of parameter space: An investigation of spatial non-stationarity. Int. J. Geogr. Inf. Sci. 1996, 10, 605–627. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Xu, Y.; E Warner, M. Does devolution crowd out development? A spatial analysis of US local government fiscal effort. Environ. Plan. A Econ. Space 2015, 48, 871–890. [Google Scholar] [CrossRef]
- Liu, K.; Qiao, Y.; Shi, T.; Zhou, Q. Study on coupling coordination and spatiotemporal heterogeneity between economic development and ecological environment of cities along the Yellow River Basin. Environ. Sci. Pollut. Res. 2021, 28, 6898–6912. [Google Scholar] [CrossRef]
- Shen, T.Y.H.; Zhou, L.; Gu, H.; He, H. On hedonic price of second-hand houses in Beijing based on multi-scale geographically weighted regression: Scale law of spatial heterogeneity. Econ. Geogr. 2020, 40, 75–83. (In Chinese) [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Assoc. Am. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Yu, H.; Fotheringham, A.S.; Li, Z.; Oshan, T.; Kang, W.; Wolf, L.J. Inference in Multiscale Geographically Weighted Regression. Geogr. Anal. 2019, 52, 87–106. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Yue, H.; Li, Z. Examining the influences of air quality in China’s cities using multi-scale geographically weighted regression. Trans. GIS 2019, 23, 1444–1464. [Google Scholar] [CrossRef]
- Gu, H.; Yu, H.; Sachdeva, M.; Liu, Y. Analyzing the distribution of researchers in China: An approach using multiscale geographically weighted regression. Growth Chang. 2020, 52, 443–459. [Google Scholar] [CrossRef]
- Iyanda, A.E.; Osayomi, T. Is there a relationship between economic indicators and road fatalities in Texas? A multiscale geographically weighted regression analysis. Geojournal 2020, 86, 2787–2807. [Google Scholar] [CrossRef]
- Lao, X.; Gu, H. Unveiling various spatial patterns of determinants of hukou transfer intentions in China: A multi-scale geographically weighted regression approach. Growth Chang. 2020, 51, 1860–1876. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Zhang, X. How do varying socio-economic factors affect the scale of land transfer? Evidence from 287 cities in China. Environ. Sci. Pollut. Res. 2022, 29, 40865–40877. [Google Scholar] [CrossRef] [PubMed]
- Behrens, K.; Thisse, J.-F. Regional economics: A new economic geography perspective. Reg. Sci. Urban Econ. 2007, 37, 457–465. [Google Scholar] [CrossRef]
- Ertur, C.; Koch, W. Regional disparities in the European Union and the enlargement process: An exploratory spatial data analysis, 1995–2000. Ann. Reg. Sci. 2006, 40, 723–765. [Google Scholar] [CrossRef]
- Zhou, C.; Fu, L.; Xue, Y.; Wang, Z.; Zhang, Y. Using multi-source data to understand the factors affecting mini-park visitation in Yancheng. Environ. Plan. B Urban Anal. City Sci. 2021, 49, 754–770. [Google Scholar] [CrossRef]
- Gao, F.; Huang, G.; Li, S.; Huang, Z.; Chai, L. Integrating the Eigendecomposition Approach and k-Means Clustering for Inferring Building Functions with Location-Based Social Media Data. ISPRS Int. J. Geo Inf. 2021, 10, 834. [Google Scholar] [CrossRef]
- Gatto, A. A pluralistic approach to economic and business sustainability: A critical meta-synthesis of foundations, metrics, and evidence of human and local development. Corp. Soc. Responsib. Environ. Manag. 2020, 27, 1525–1539. [Google Scholar] [CrossRef]
- Mathebula, N.E. Small businesses contribution to rural economic development in the Greater Giyani Municipality area: Perceptions from owners. Int. J. Indian Cult. Bus. Manag. 2017, 15, 229. [Google Scholar] [CrossRef]
- Yang, F.F.; O Yeh, A.G. Spatial Development of Producer Services in the Chinese Urban System. Environ. Plan. A Econ. Space 2013, 45, 159–179. [Google Scholar] [CrossRef]
- Chen, Q.; Ye, T.; Zhao, N.; Ding, M.; Ouyang, Z.; Jia, P.; Yue, W.; Yang, X. Mapping China’s regional economic activity by integrating points-of-interest and remote sensing data with random forest. Environ. Plan. B Urban Anal. City Sci. 2020, 48, 1876–1894. [Google Scholar] [CrossRef]
- Ye, X.Y.; Song, J.B. Research on Economics and Traffic Survey City Area. Adv. Mater. Res. 2013, 734–737, 1586–1589. [Google Scholar] [CrossRef]
- Rarasati, A.D.; Iskandar, T.R. Integrated sustainability for transportation infrastructure development in Indonesia: A case study of Karawang region. MATEC Web Conf. 2017, 138, 07004. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Yang, D.; Qin, M.; Jing, W. Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use. Land Use Policy 2020, 99, 104958. [Google Scholar] [CrossRef]
- Li, H.; Yin, F.; Li, J. China’s Construction Land Expansion and Economic Growth: A Capital-output Ratio Based Analysis. China World Econ. 2008, 16, 46–62. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Charlton, M.; Brunsdon, C. Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environ. Plan. A Econ. Space 1998, 30, 1905–1927. [Google Scholar] [CrossRef]
- Li, S.; Lyu, D.; Huang, G.; Zhang, X.; Gao, F.; Chen, Y.; Liu, X. Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China. J. Transp. Geogr. 2020, 82, 102631. [Google Scholar] [CrossRef]
- Deng, X.; Gao, F.; Liao, S.; Li, S. Unraveling the association between the built environment and air pollution from a geospatial perspective. J. Clean. Prod. 2023, 386, 135768. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo Inf. 2019, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, X. Spatial heterogeneity of factors influencing transportation CO2 emissions in Chinese cities: Based on geographically weighted regression model. Air Qual. Atmos. Health 2020, 13, 977–989. [Google Scholar] [CrossRef]
- Gu, H.; Chen, C.; Lu, Y.; Chu, Y.; Ma, Y. Construction of regional economic development model based on remote sensing data. IOP Conf. Ser. Earth Environ. Sci. 2019, 310, 052060. [Google Scholar] [CrossRef]
- da Silva, A.R.; Fotheringham, A.S. The Multiple Testing Issue in Geographically Weighted Regression. Geogr. Anal. 2016, 48, 233–247. [Google Scholar] [CrossRef]
- Si, L.; Wang, J.; Yang, S.; Yang, Y.; Zhang, J. Urban Green Development towards Sustainability in Northwest China: Efficiency Assessment, Spatial-Temporal Differentiation Characters, and Influencing Factors. Complexity 2021, 2021, 6630904. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y. Research on the Spatial Distribution Pattern and Influencing Factors of Digital Economy Development in China. IEEE Access 2021, 9, 63094–63106. [Google Scholar] [CrossRef]
- Wei, W.; Ren, X.; Guo, S. Evaluation of Public Service Facilities in 19 Large Cities in China from the Perspective of Supply and Demand. Land 2022, 11, 149. [Google Scholar] [CrossRef]
- Tang, S.l.; Zhou, W.; Wang, G. Hose Price Chinges, Industry Transfer and Regional Coordinated Development. Chin. J. Manag. Sci. 2021, 29, 14–23. [Google Scholar] [CrossRef]
- Hu, H.; Huang, X.; Li, P.; Zhao, P. Comparison of Network Structure Patterns of Urban Agglomerations in China from the Perspective of Space of Flows: Analysis based on Railway Schedule. J. Geo Inf. Sci. 2021, 24, 1525–1540. (In Chinese) [Google Scholar]
- Yang, H.H.; Wang, Q. Evaluation of Land Use Efficiency in Three Major Urban Agglomerations of China in 2001–2012. Sci. Geogr. Sin. 2015, 35, 1095–1100. (In Chinese) [Google Scholar] [CrossRef]
- Liu, X.; Derudder, B.; Wang, M. Polycentric urban development in China: A multi-scale analysis. Environ. Plan. B Urban Anal. City Sci. 2017, 45, 953–972. [Google Scholar] [CrossRef]
- Li, Y.; Ye, H.; Gao, X.; Sun, D.; Li, Z.; Zhang, N.; Leng, X.; Meng, D.; Zheng, J. Spatiotemporal Patterns of Urbanization in the Three Most Developed Urban Agglomerations in China Based on Continuous Nighttime Light Data (2000–2018). Remote Sens. 2021, 13, 2245. [Google Scholar] [CrossRef]
- Deng, X.; Gao, F.; Liao, S.; Liu, Y.; Chen, W. Spatiotemporal evolution patterns of urban heat island and its relationship with urbanization in Guangdong-Hong Kong-Macao greater bay area of China from 2000 to 2020. Ecol. Indic. 2023, 146, 109817. [Google Scholar] [CrossRef]
- Gao, F.; Li, S.; Tan, Z.; Wu, Z.; Zhang, X.; Huang, G.; Huang, Z. Understanding the modifiable areal unit problem in dockless bike sharing usage and exploring the interactive effects of built environment factors. Int. J. Geogr. Inf. Sci. 2021, 35, 1905–1925. [Google Scholar] [CrossRef]
- Sun, J.; Di, L.; Sun, Z.; Wang, J.; Wu, Y. Estimation of GDP Using Deep Learning With NPP-VIIRS Imagery and Land Cover Data at the County Level in CONUS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1400–1415. [Google Scholar] [CrossRef]
Category | Variable | Description | Source | PCC | VIF |
---|---|---|---|---|---|
Natural factors | ALT | The average altitude for each county | Resources and Environment Science and Data Center “https://www.resdc.cn/ (accessed on 15 September 2022) | −0.275 ** | 1.497 |
RAIN | The average annual rainfall for each county | National Meteorological Science Data Center “http://data.cma.cn/ (accessed on 15 September 2022)” | 0.223 ** | 1.475 | |
Social media factors | TUD | The sum of annual Tencent user density data for each county | Tencent location big data platform “https://heat.qq.com (accessed on 28 April to 10 May 2019) | 0.819 ** | 6.496 |
Business factors | CORP | The sum of kernel density data calculated by the corporation and enterprise POI data for each county | Baidu map open platform “https://lbsyun.baidu.com/ (accessed on 15 September 2020)” | 0.818 ** | 5.044 |
REALTY | The sum of kernel density data calculated by the commercial residential POI data for each county | 0.766 ** | 4.880 | ||
ENT | The sum of kernel density data calculated by the scenic spot, sports leisure, and event activity POI data for each county | 0.805 ** | 8.055 | ||
Infrastructure factors | ROAD | The sum of kernel density data calculated by the above-national-level road traffic data for each county | AMAP open platform “https://lbs.amap.com/ (accessed on 15 September 2022)” | 0.478 ** | 1.973 |
PUB | The sum of kernel density data calculated by the public facilities POI data for each county | Baidu map open platform “https://lbsyun.baidu.com/ (accessed on 15 September 2020)” | 0.753 ** | 4.443 | |
Land-used factors | ALAND | The total area of arable land for each county | Resources and Environment Science and Data Center “https://www.resdc.cn/ (accessed on 15 September 2022)” | −0.064 ** | 1.416 |
CLAND | The total area of construction land for each county | 0.397 ** | 2.701 |
Variables | Coefficient | ||
---|---|---|---|
OLS | GWR | MGWR | |
INTERCEPT | −31.282 | −0.003 | −0.034 |
ALT | −0.015 | −0.134 | −0.153 |
RAIN | 0.007 | 0.048 | −0.031 |
TUD | 0.021 | 0.206 | 0.147 |
CORP | 0.011 | 0.461 | 0.510 |
ENT | 0.036 | 0.132 | 0.041 |
REALTY | 0.012 | 0.089 | 0.179 |
ROAD | 0.017 | 0.045 | 0.090 |
PUB | 0.067 | 0.045 | 0.038 |
ALAND | −0.012 | 0.038 | −0.016 |
CLAND | 0.227 | 0.007 | −0.005 |
Adj.R2 | 0.745 | 0.800 | 0.839 |
AICc | 3457.437 | 2941.573 | 2600.474 |
RSS | 594.476 | 447.022 | 344.855 |
Variables | MGWR Coefficients | Percentage of Counties by Significance (95% Level) of t-Test | ||||
---|---|---|---|---|---|---|
Min | Max | Mean | p ≤ 0.05 (%) | + (%) | − (%) | |
INTERCEPT | −0.326 | 0.294 | −0.034 | 35.77 | 29.39 | 70.61 |
ALT | −0.227 | −0.092 | −0.153 | 100 | 0 | 100 |
RAIN | −0.033 | −0.029 | −0.031 | 0 | 0 | 0 |
TUD | −0.119 | 0.327 | 0.147 | 62.61 | 100 | 0 |
CORP | −0.085 | 1.155 | 0.510 | 88.12 | 100 | 0 |
ENT | 0.037 | 0.043 | 0.041 | 0 | 0 | 0 |
REALTY | −0.113 | 0.743 | 0.179 | 46.84 | 87.77 | 12.33 |
ROAD | −0.214 | 0.849 | 0.090 | 32.95 | 86.51 | 13.49 |
PUB | −0.100 | 0.301 | 0.038 | 20.21 | 100 | 0 |
ALAND | −0.279 | 0.150 | −0.016 | 20.82 | 37.58 | 62.42 |
CLAND | −1.846 | 0.679 | −0.005 | 27.99 | 67.33 | 32.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Li, S.; Peng, Y.; Gao, F. Spatial Non-Stationarity of Influencing Factors of China’s County Economic Development Base on a Multiscale Geographically Weighted Regression Model. ISPRS Int. J. Geo-Inf. 2023, 12, 109. https://doi.org/10.3390/ijgi12030109
Huang Z, Li S, Peng Y, Gao F. Spatial Non-Stationarity of Influencing Factors of China’s County Economic Development Base on a Multiscale Geographically Weighted Regression Model. ISPRS International Journal of Geo-Information. 2023; 12(3):109. https://doi.org/10.3390/ijgi12030109
Chicago/Turabian StyleHuang, Ziwei, Shaoying Li, Yihuan Peng, and Feng Gao. 2023. "Spatial Non-Stationarity of Influencing Factors of China’s County Economic Development Base on a Multiscale Geographically Weighted Regression Model" ISPRS International Journal of Geo-Information 12, no. 3: 109. https://doi.org/10.3390/ijgi12030109
APA StyleHuang, Z., Li, S., Peng, Y., & Gao, F. (2023). Spatial Non-Stationarity of Influencing Factors of China’s County Economic Development Base on a Multiscale Geographically Weighted Regression Model. ISPRS International Journal of Geo-Information, 12(3), 109. https://doi.org/10.3390/ijgi12030109