China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model
<p>Numbered provinces and cities in China.</p> "> Figure 2
<p>Geographical distribution of average PM<sub>2.5</sub> in various provinces of China from 2004 to 2008.</p> "> Figure 3
<p>Dot density map of the average respiratory disease mortality for the 2004–2008 Chinese provinces.</p> "> Figure 4
<p>Moran scatter plots for average respiratory disease mortality in 2004–2008.</p> "> Figure 5
<p>Moran scatterplot for average PM<sub>2.5</sub> in 2004–2008.</p> ">
Abstract
:1. Introduction
1.1. The Relations between Air Pollution and Mortality
1.2. Research Purpose and Hypothesis
2. Materials and Methods
2.1. Variables and Data Source
2.2. Data of PM2.5
2.3. Mortality of Respiratory Disease
2.4. Analysis Model
2.5. The Setting of the Spatial Weight Matrix and the Spatial Model
2.5.1. The Setting of the Spatial Weight
- If the region i is adjacent to the region j, the weight matrix is equal to 1;
- If the region i is not adjacent to the region j, the weight matrix is equal to zero;
- If the region i is equal to the region j, the weight matrix is equal to zero.
2.5.2. The Setting of the Spatial Model
3. Results
3.1. Descriptive Statistics
3.2. Spatial Distribution Maps
3.3. Space Exploratory Analysis
3.3.1. Mortality of Respiratory Diseases in China and the Global Spatial Autocorrelation Test of PM2.5 Based on Moran’s I Index
3.3.2. Chinese Respiratory Disease Mortality and Local Spatial Autocorrelation Test of PM2.5 Based on Moran’s I Scatter Plot
3.4. The Empirical Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. Air Quality Guidelines-Global Update 2005; WHO Regional Office for Europe: Bonn, Germany, 2005; pp. 9–19. [Google Scholar]
- Ministry of Environmental Protection of the People’s Republic of China. The Chinese Environment Bulletin in 2015; China National Environmental Monitoring Center: Beijing, China, 2016.
- Beijing Municipal Environmental Protection Bureau. Beijing Environmental Statement 2014; Beijing Municipal Environmental Monitoring Center: Beijing, China, 2014.
- Sun, Y.; Zhuang, G.; Wang, Y.; Han, L.; Guo, J.; Dan, M.; Zhang, W.; Wang, Z.; Hao, Z. The air-borne particulate pollution in Beijing—Concentration, composition, distribution and sources. Atmos. Environ. 2004, 38, 5991–6004. [Google Scholar] [CrossRef]
- Hoffmann, B.; Luttmann-Gibson, H.; Cohen, A.; Zanobetti, A.; de Souza, C.; Foley, C.; Suh, H.H.; Coull, B.A.; Schwartz, J.; Mittleman, M. Opposing effects of particle pollution, ozone, and ambient temperature on arterial blood pressure. Environ. Health Perspect. 2012, 120, 241–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Liu, T.; Xiao, J.; Zeng, W.; Guo, L.; Li, X.; Xu, Y.; Zhang, Y.; Chang, J.J.; Vaughn, M.G.; et al. Hourly peak PM2.5 concentration associated with increased cardiovascular mortality in Guangzhou, China. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Xu, H.; Xu, Q.; Chen, B.; Kan, H. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city. Environ. Health Perspect. 2012, 120, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, L.W.; Huang, J.J.; Song, F.J.; Zhang, L.P.; Qian, Z.M.; Trevathan, E.; Mao, H.J.; Han, B.; Vaughn, M. Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China. Sci. Total Environ. 2016, 571, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA Sci. Total Environ. 2002, 287, 1132–1141. [Google Scholar] [CrossRef]
- Chung, Y.; Dominici, F.; Wang, Y.; Coull, B.A.; Bell, M.L. Associations between long-term exposure to chemical constituents of fine particulate matter (PM2.5) and mortality in Medicare enrollees in the eastern United States. Environ. Health Perspect. 2015, 123, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Parker, J.; Bell, M.L.; Bonzini, M.; Brauer, M.; Darrow, L.A.; Gehring, U.; Glinianaia, S.V.; Gouveia, N.; Ha, E.H.; et al. Maternal exposure to particulate air pollution and term birth weight: A multi-country evaluation of effect and heterogeneity. Environ. Health Perspect. 2013, 121, 267–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, P.S.; Balkhair, T. Air pollution and birth outcomes: A systematic review. Environ. Int. 2011, 37, 498–516. [Google Scholar] [CrossRef] [PubMed]
- Zanobetti, A.; Dominici, F.; Wang, Y.; Schwartz, J.D. A national case-crossover analysis of the short-term effect of PM2.5 on hospitalizations and mortality in subjects with diabetes and neurological disorders. Environ. Health 2014, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Tzivian, L.; Winkler, A.; Dlugaj, M.; Schikowski, T.; Vossoughi, M.; Fuks, K.; Weinmayr, G.; Hoffmann, B. Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int. J. Hyg. Environ. Health 2015, 218, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Guxens, M.; Sunyer Deu, J. A review of epidemiological studies on neuropsychological effects of air pollution. Swiss Med. Wkly. 2012, 141, w13322. [Google Scholar] [PubMed]
- Giovanis, E.; Ozdamar, O. Structural equation modelling and the causal effect of permanent income on life satisfaction: The case of air pollution valuation in Switzerland. J. Econ. Surv. 2016, 30, 430–459. [Google Scholar] [CrossRef]
- Welsch, H. Valuation of air pollution using life satisfaction data. Ecol. Econ. 2005, 58, 801–813. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.F.S.; Stickley, A.; Konishi, S.; Watanabe, C. Ambient air pollution and suicide in Tokyo, 2001–2011. J. Affect. Disorders 2016, 201, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Bakian, A.V.; Huber, R.S.; Coon, H.; Gray, D.; Wilson, P.; McMahon, W.M.; Renshaw, P.F. Acute air pollution exposure and risk of suicide completion. Am. J. Epidemiol. 2015, 181, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Gu, S.; Chen, J.; Wu, X.; Yu, J. Assessment of health and economic effects by PM2.5 pollution in Beijing: A combined exposure-response and computable general equilibrium analysis. Environ. Technol. 2016, 37, 3131–3138. [Google Scholar] [CrossRef] [PubMed]
- Jerrett, M.; Finkelstein, M.M.; Brook, J.R.; Arain, M.A.; Kanaroglou, P.; Stieb, D.M.; Gilbert, N.L.; Verma, D.; Finkelstein, N.; Chapman, K.R. A cohort study of traffic-related air pollution and mortality in Toronto, Ontario, Canada. Environ. Health Perspect. 2009, 117, 772. [Google Scholar] [CrossRef] [PubMed]
- Jerrett, M.; Burnett, R.T.; Beckerman, B.S.; Turner, M.C.; Krewski, D.; Thurston, G.; Martin, R.V.; van Donkelaar, A.; Hughes, E.; Shi, Y. Spatial analysis of air pollution and mortality in California. Am. J. Respir. Crit. Care Med. 2013, 188, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, X.; Liu, H.; Wang, M.; Welles, S.; Márquez, S.; Frank, A.; Haas, C.N. Spatial-temporal analysis of air pollution, climate change, and total mortality in 120 cities of China, 2012–2013. Front. Public Health 2016, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Xiang, K.; Song, D. Spatial Analysis of China’s PM2.5 pollution at the provincial level. China Popul. Resour. Environ. 2015, 25, 19. [Google Scholar]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Zhang, X. The spatial effect of China’s haze pollution and the impact from economic change and energy structure. China Ind. Econ. 2014, 4, 19–31. [Google Scholar]
- Ma, Z.; Hu, X.; Sayer, A.M.; Levy, R.; Zhang, Q.; Xue, Y.; Tong, S.; Bi, J.; Huang, L.; Liu, Y. Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013. Environ. Health Perspect. 2016, 124, 184. [Google Scholar] [CrossRef] [PubMed]
- Marmot, M. Social determinants of health inequalities. Lancet 2005, 365, 1099–1104. [Google Scholar] [CrossRef]
- Chen, T.; Chen, S. Air pollution and public health: Evidence from sulfur dioxide emission of coal-red power stations in China. Econ. Res. J. 2016, 49, 158–169. [Google Scholar]
- Levy, L.; Herzog, A.N. Effects of population density and crowding on health and social adaptation in The Netherlands. J. Health Soc. Behav. 1974, 15, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Crémieux, P.Y.; Meilleur, M.C.; Ouellette, P.; Petit, P.; Zelder, M.; Potvin, K. Public and private pharmaceutical spending as determinants of health outcomes in Canada. Health Econ. 2005, 14, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 2015, 123, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Institute, B.M. Global Annual Average PM2.5 Grids from Modis and Misr Aerosol Optical Depth (AOD); NASA Socioeconomic Data and Applications Center (SEDAC): New York, NY, USA, 2013. [Google Scholar]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Boston, MA, USA, 1988. [Google Scholar]
- Anselin, L. Thirty years of spatial econometrics. Papers Reg. Sci. 2010, 89, 3–25. [Google Scholar] [CrossRef]
- Liang, Y.; Guo, M. Utilization of health services and health-related quality of life research of rural-to-urban migrants in China: A cross-sectional analysis. Soc. Indic. Res. 2015, 120, 277–295. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, D.M. Subjective well-being of Chinese landless peasants in relatively developed regions: Measurement using PANAS and SWLS. Soc. Indic. Res. 2015, 123, 817–835. [Google Scholar] [CrossRef]
Number | Region | Adjacent Region Number | Number | Region | Adjacent Region Number |
---|---|---|---|---|---|
1 | Beijing | 2 3 | 17 | Hubei | 12 14 16 18 22 27 |
2 | Tianjin | 1 3 15 | 18 | Hunan | 14 17 19 20 22 24 |
3 | Hebei | 1 2 4 5 6 15 16 | 19 | Guangdong | 13 14 18 20 21 |
4 | Shanxi | 3 5 16 27 | 20 | Guangxi | 18 19 24 25 |
5 | Neimenggu | 3 4 6 7 8 27 28 30 | 21 | Hainan | 19 |
6 | Liaoning | 3 5 7 | 22 | Sichuan | 17 18 23 24 27 |
7 | Jilin | 5 6 8 | 23 | Chongqing | 22 24 25 26 27 28 29 |
8 | Heilongjiang | 5 7 | 24 | Guizhou | 18 20 22 23 25 |
9 | Shanghai | 10 11 | 25 | Yunnan | 20 23 24 26 |
10 | Jiangsu | 9 11 12 15 | 26 | Tibet | 23 25 29 31 |
11 | Zhejiang | 9 10 12 13 14 | 27 | Shaanxi | 4 5 16 17 22 23 28 30 |
12 | Anhui | 10 11 14 15 16 17 | 28 | Gansu | 5 23 27 29 30 31 |
13 | Fujian | 11 14 19 | 29 | Qinghai | 23 26 28 31 |
14 | Jiangxi | 11 12 13 17 18 19 | 30 | Ningxia | 5 27 28 |
15 | Shandong | 2 3 10 12 16 | 31 | Xinjiang | 26 28 29 |
16 | Henan | 3 4 12 15 17 27 |
Variable | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Respiratory Mortality Rate | 155 | 0.61 | 0.71 | 0.01 | 3.72 |
PM2.5 | 155 | 40.67 | 20.73 | 4.17 | 85.40 |
GDP | 155 | 9.71 | 0.57 | 8.37 | 11.23 |
Medical Expenses | 155 | 8.42 | 0.36 | 7.63 | 9.55 |
Hospital Number | 155 | 8.94 | 0.77 | 7.19 | 10.11 |
Population Density | 155 | 386.97 | 516.89 | 2.23 | 2978.64 |
Region | Respiratory Disease Mortality (per 10,000 People) | Region | Respiratory Disease Mortality (per 10,000 People) |
---|---|---|---|
Beijing | 2.25 | Jilin | 1.27 |
Tianjin | 1.18 | Heilongjiang | 1.10 |
Shanghai | 2.86 | Liaoning | 0.91 |
Anhui | 1.19 | Tibet | 0.05 |
Hubei | 1.38 | Gansu | 0.17 |
Year | Mortality of Respiratory Disease | PM2.5 | ||
---|---|---|---|---|
Morlan’s I | p | Morlan’s I | p | |
2004 | 0.210 | <0.05 | 0.577 | <0.01 |
2005 | 0.204 | <0.05 | 0.558 | <0.01 |
2006 | 0.211 | <0.05 | 0.571 | <0.01 |
2007 | 0.187 | <0.05 | 0.576 | <0.01 |
2008 | 0.152 | <0.1 | 0.559 | <0.01 |
Parameters to be Evaluated | SDM Estimation Results | SLM Estimation Results | SEM Estimation Results | ||||||
---|---|---|---|---|---|---|---|---|---|
Coef. | Z | p | Coef. | Z | p | Coef. | Z | p | |
PM2.5 | 0.0281 | 2.50 | <0.01 | 0.0289 | 2.54 | <0.01 | 0.0205 | 2.13 | <0.05 |
GDP | 0.6535 | 2.52 | <0.01 | 0.5497 | 2.41 | <0.05 | 0.5766 | 2.03 | <0.05 |
hospital number | −0.1751 | −0.66 | 0.51 | −0.2010 | −0.62 | 0.54 | −0.2404 | −0.96 | 0.33 |
medical expensense | −0.5127 | −1.36 | 0.12 | −0.6301 | −1.28 | 0.25 | −0.6460 | −1.09 | 0.27 |
population density | 0.0043 | 2.96 | <0.01 | 0.0042 | 1.47 | 0.14 | 0.0042 | 1.63 | 0.10 |
δ | −0.0991 | −0.68 | 0.49 | ||||||
ρ | 0.5027 | 6.16 | <0.01 | 0.5078 | 8.45 | <0.01 | |||
λ | 0.5912 | 7.82 | <0.05 | ||||||
sigma2_e | 0.0762 | 8.62 | <0.01 | 0.0764 | 3.94 | <0.01 | 0.0773 | 3.70 | <0.05 |
R2 | 0.45 | 0.52 | 0.51 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Q.; Liang, Y.; Niu, X. China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model. Int. J. Environ. Res. Public Health 2017, 14, 1081. https://doi.org/10.3390/ijerph14091081
Cao Q, Liang Y, Niu X. China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model. International Journal of Environmental Research and Public Health. 2017; 14(9):1081. https://doi.org/10.3390/ijerph14091081
Chicago/Turabian StyleCao, Qilong, Ying Liang, and Xueting Niu. 2017. "China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model" International Journal of Environmental Research and Public Health 14, no. 9: 1081. https://doi.org/10.3390/ijerph14091081
APA StyleCao, Q., Liang, Y., & Niu, X. (2017). China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model. International Journal of Environmental Research and Public Health, 14(9), 1081. https://doi.org/10.3390/ijerph14091081