Influence of Crowd Participation Features on Mobile Edge Computing
<p>Illustration of mobile edge computing (MEC).</p> "> Figure 2
<p>System architecture. MBS, macro base station; SBS, small base station; UT, user terminal; RUT, requesting user terminal; D2D, device-to-device.</p> "> Figure 3
<p>Three phases in the data forwarding strategy. (<b>a</b>) Source flooding phase; (<b>b</b>) shortest path phase; (<b>c</b>) destination flooding phase.</p> "> Figure 4
<p>Taxonomy, analysis and evaluation of opportunistic routing protocols (ORPs).</p> "> Figure 5
<p>Nodes’ roles in content delivery with NCSUdatasets. The figure corresponds to the case where nodes are removed based on their relative importance or centrality. The red curves with circles represent the results when removing first the high relative importance nodes, moving toward the lower nodes. The black curves with rectangles show the case where nodes with high global centrality are first removed.</p> "> Figure 6
<p>The hit rate of four caching algorithms under different settings. (<b>a</b>) Different quantity level; (<b>b</b>) different storage size.</p> ">
Abstract
:1. Introduction
- Opportunistic caching: The application can independently decide which content should be stored and shared, without active participation from end users.
- Opportunistic transmission: The routing path cannot be decided in advance, and the content is delivered in a store-carry-forward style.
2. Opportunistic Caching
- (1)
- How big a buffer space should each node reserve?
- (2)
- How many copies should be stored for each content?
- (3)
- Where should these copies be stored?
2.1. Cache Size: How Big Is the Buffer Space?
Upper Bound Analysis
2.2. Content Copies: How Many Copies Should Be Stored?
2.3. Content Allocation: Where to Store the Copies?
2.3.1. Cache Contents in the UTs and FAE
2.3.2. Cache Contents in the D2D Group
3. Opportunistic Transmission
3.1. Control Plane: How to Collect the Heuristic Information?
3.2. Data Plane: How to Select the Desired Relay?
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, H.; Liu, L.; Zhou, A.; Zhao, D. On networking of internet of things: Explorations and challenges. IEEE Internet Things J. 2016, 3, 441–452. [Google Scholar] [CrossRef]
- Huang, J.; Xing, C.C.; Wang, C. Simultaneous Wireless Information and Power Transfer: Technologies, Applications, and Research Challenges. IEEE Commun. Mag. 2017, 55, 26–32. [Google Scholar] [CrossRef]
- Wang, X.; Chen, M.; Taleb, T.; Ksentini, A.; Leung, V. Cache in the air: exploiting content caching and delivery techniques for 5G systems. IEEE Commun. Mag. 2014, 52, 131–139. [Google Scholar] [CrossRef]
- Bilal, K.; Khalid, O.; Erbad, A.; Khan, S.U. Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers. Comput. Netw. 2018, 130, 94–120. [Google Scholar] [CrossRef]
- Yang, C.; Yao, Y.; Chen, Z.; Xia, B. Analysis on Cache-Enabled Wireless Heterogeneous Networks. IEEE Trans. Wirel. Commun. 2016, 15, 131–145. [Google Scholar] [CrossRef]
- Ma, H.; Zhao, D.; Yuan, P. Opportunities in mobile crowd sensing. IEEE Commun. Mag. 2014, 52, 29–35. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Y. On coverage problems of directional sensor networks. In Proceedings of the International Conference on Mobile Ad-Hoc and Sensor Networks, Wuhan, China, 13–15 December 2005; pp. 721–731. [Google Scholar]
- Yuan, P.; Ma, H.; Fu, H. Hotspot-entropy based data forwarding in opportunistic social networks. Pervasive Mob. Comput. 2015, 16, 136–154. [Google Scholar] [CrossRef]
- Luo, H.; Luo, J.; Liu, Y.; Das, S.K. Adaptive data fusion for energy efficient routing in wireless sensor networks. IEEE Trans. Comput. 2006, 55, 1286–1299. [Google Scholar]
- Zhao, X.; Yuan, P.; Chen, Y.; Chen, P. Femtocaching assisted multi-source D2D content delivery in cellular networks. EURASIP J. Wirel. Commun. Netw. 2017, 2017, 125. [Google Scholar] [CrossRef] [Green Version]
- Gerla, M.; Tsai, J.T.C. Multicluster, mobile, multimedia radio network. Wirel. Netw. 1995, 1, 255–265. [Google Scholar] [CrossRef]
- Lin, C.R.; Gerla, M. Adaptive clustering for mobile wireless networks. IEEE J. Sel. Areas Commun. 1997, 15, 1265–1275. [Google Scholar] [CrossRef] [Green Version]
- Tsiropoulou, E.E.; Paruchuri, S.T.; Baras, J.S. Interest, energy and physical-aware coalition formation and resource allocation in smart IoT applications. In Proceedings of the 2017 51st Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA, 22–24 March 2017; pp. 1–6. [Google Scholar]
- Tsiropoulou, E.E.; Mitsis, G.; Papavassiliou, S. Interest-aware energy collection & resource management in machine to machine communications. Ad Hoc Netw. 2018, 68, 48–57. [Google Scholar]
- Zhao, X.; Yuan, P.; Chen, Y.; Chen, P. Cooperative D2D for Content Delivery in Heterogeneous Networks. In Proceedings of the International Conference on Big Data Computing and Communications, Chengdu, China, 10–11 August 2017; pp. 265–271. [Google Scholar]
- Becchetti, L.; Clementi, A.; Pasquale, F.; Resta, G.; Santi, P.; Silvestri, R. Flooding time in opportunistic networks under power law and exponential intercontact times. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2297–2306. [Google Scholar] [CrossRef]
- Yuan, P.; Wu, H.; Zhao, X.; Dong, Z. Percolation-theoretic bounds on the cache size of nodes in mobile opportunistic networks. Sci. Rep. 2017, 7, 5662. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Wu, H.; Zhao, X.; Dong, Z. Cache Potentiality of MONs: A Prime. In Proceedings of the IEEE International Conference on Distributed Computing Systems, Atlanta, GA, USA, 5–8 June 2017; pp. 2650–2653. [Google Scholar]
- Zhu, H.; Huang, C.; Li, H. Information diffusion model based on privacy setting in online social networking services. Comput. J. 2014, 58, 536–548. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, P.; Li, H.; Tang, S. Collaborative edge caching in context-aware D2D networks. IEEE Trans. Veh. Technol. 2018. [Google Scholar] [CrossRef]
- Fan, L.; Dong, Z.; Yuan, P. The capacity of Device-to-device communication underlaying cellular networks with relay links. IEEE Access 2017, 5, 16840–16846. [Google Scholar] [CrossRef]
- Yuan, P.; Fan, L.; Liu, P.; Tang, S. Recent progress in routing protocols of mobile opportunistic networks. J. Netw. Comput. Appl. 2016, 62, 163–170. [Google Scholar] [CrossRef]
- Lindgren, A.; Doria, A.; Schelen, O. Probabilistic routing in intermittently connected networks. In Service Assurance with Partial and Intermittent Resources; Springer: Berlin, Germany, 2004; pp. 239–254. [Google Scholar]
- Daly, E.M.; Haahr, M. Social network analysis for information flow in disconnected delay-tolerant MANETs. IEEE Trans. Mob. Comput. 2009, 8, 606–621. [Google Scholar] [CrossRef]
- Hui, P.; Crowcroft, J.; Yoneki, E. Bubble rap: Social-based forwarding in delay-tolerant networks. IEEE Trans. Mob. Comput. 2011, 10, 1576–1589. [Google Scholar] [CrossRef]
- Yuan, P.; Song, M.; Zhao, X. Effective and efficient collection of control messages for opportunistic routing algorithms. J. Netw. Comput. Appl. 2017, 125–130. [Google Scholar] [CrossRef]
- Mtibaa, A.; May, M.; Diot, C.; Ammar, M. Peoplerank: Social opportunistic forwarding. In Proceedings of the Infocom, San Diego, CA, USA, 14–19 March 2010; pp. 1–5. [Google Scholar]
- Yuan, P.; Liu, P.; Tang, S. RIM: Relative-importance based data forwarding in people-centric networks. J. Netw. Comput. Appl. 2016, 62, 100–111. [Google Scholar] [CrossRef]
- Pietilänen, A.K.; Diot, C. Dissemination in opportunistic social networks: the role of temporal communities. In Proceedings of the Thirteenth ACM international Symposium on Mobile Ad Hoc Networking and Computing, Hilton Head, SC, USA, 11–14 June 2012; pp. 165–174. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, P.; Pang, X.; Zhao, X. Influence of Crowd Participation Features on Mobile Edge Computing. Future Internet 2018, 10, 94. https://doi.org/10.3390/fi10100094
Yuan P, Pang X, Zhao X. Influence of Crowd Participation Features on Mobile Edge Computing. Future Internet. 2018; 10(10):94. https://doi.org/10.3390/fi10100094
Chicago/Turabian StyleYuan, Peiyan, Xiaoxiao Pang, and Xiaoyan Zhao. 2018. "Influence of Crowd Participation Features on Mobile Edge Computing" Future Internet 10, no. 10: 94. https://doi.org/10.3390/fi10100094
APA StyleYuan, P., Pang, X., & Zhao, X. (2018). Influence of Crowd Participation Features on Mobile Edge Computing. Future Internet, 10(10), 94. https://doi.org/10.3390/fi10100094