Mixed-Stable Models: An Application to High-Frequency Financial Data
Abstract
:1. Introduction
2. Data
2.1. Previous-Tick Interpolation
2.2. Models for Financial Data
2.3. Empirical Moments
3. Stable and Mixed-Stable Models
3.1. -Stable Distribution
3.2. Stable Probability Density Function Calculation: The Smart- Approach
3.3. Mixed-Stable Distribution
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DAX | Deutscher Aktienindex |
PT | Processing time |
KT | Koutrouvelis test |
ML | Maximum likelihood |
probability density function |
References
- Bailey, G.; Steeley, J. Forecasting the volatility of the Australian dollar using high-frequency data: Does estimator accuracy improve forecast evaluation? Int. J. Financ. Econ. 2019, 24, 1355–1389. [Google Scholar] [CrossRef]
- Degiannakis, S.; Filis, G. Forecasting oil prices: High-frequency financial data are indeed useful. Energy Econ. 2018, 78, 388–402. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J. Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models. Energy Econ. 2019, 78, 192–201. [Google Scholar] [CrossRef]
- Göncü, A.; Yang, H. Variance-gamma and normal-inverse gaussian models: Goodness-of-fit to Chinese high-frequency index returns. N. Am. J. Econ. Financ. 2016, 36, 279–292. [Google Scholar] [CrossRef]
- Belovas, I. Modeling financial data distributions: A comparison of models. Computer Data Analysis and Modeling: Theoretical and Applied Stochastics. In Proceedings of the XI International Conference, Minsk, Belarus, 6–10 September 2016; Publishing center of BSU: Minsk, Belarus, 2016. [Google Scholar]
- Koopman, S.; Lit, R.; Lucas, A.; Opschoor, A. Dynamic discrete copula models for high-frequency stock price changes. J. Appl. Econom. 2018, 33, 966–985. [Google Scholar] [CrossRef] [Green Version]
- Schabek, T.; Drazenovic, B.; Mance, D. Reaction of Zagreb Stock Exchange CROBEX Index to macroeconomic announcements within a high frequency time interval. Zbornik Radova Ekonomskog Fakulteta u Rijeci časopis za Ekonomsku Teoriju i Praksu 2019, 37, 741–758. [Google Scholar] [CrossRef]
- Cai, T.T.; Hu, J.; Li, Y.; Zheng, X. High-dimensional minimum variance portfolio estimation based on high-frequency data. J. Econom. 2020, 214, 482–494. [Google Scholar] [CrossRef]
- Huang, W.; Gao, X. LASSO-based high-frequency return predictors for profitable Bitcoin investment. Appl. Econ. Lett. 2021. [Google Scholar] [CrossRef]
- Ambros, M.; Frenkel, M.; Huynh, T.L.D.; Kilinc, M. COVID-19 pandemic news and stock market reaction during the onset of the crisis: Evidence from high-frequency data. Appl. Econ. Lett. 2020. [Google Scholar] [CrossRef]
- Yousaf, I.; Ali, S. The COVID-19 outbreak and high frequency information transmission between major cryptocurrencies: Evidence from the VAR-DCC-GARCH approach. Borsa Istanbul Rev. 2020, 20, S1–S10. [Google Scholar] [CrossRef]
- Kaklauskas, L. Study and Application of Methods of Fractal Processes Monitoring in Computer Networks. Ph.D. Thesis, Vilnius University Institute of Mathematics and Informatics, Vilnius, Lithuania, 2012. [Google Scholar]
- Cartea, A.; Jaimungal, S.; Penalva, J. Algorithmic and High-Frequency Trading; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Belovas, I.; Starikovičius, V. Parallel computing for mixed-stable modelling of large data sets. Inf. Technol. Control 2015, 44, 148–154. [Google Scholar] [CrossRef]
- Belovas, I.; Sakalauskas, L.; Starikovičius, V. A mixed-stable approach to the management of the portfolio using high-frequency financial data. Inf. Technol. Control 2017, 46, 293–307. [Google Scholar] [CrossRef]
- Belovas, I.; Starikovičius, V. Parallelization of α-stable modelling algorithms. Math. Model. Anal. 2007, 12, 409–418. [Google Scholar] [CrossRef]
- Belovas, I.; Kabašinskas, A.; Sakalauskas, L. Returns modelling problem in the Baltic equity market. In Proceedings of the Simulation and Optimisation in Business and Industry: International Conference on Operational Research, Tallinn, Estonia, 17–20 May 2006. [Google Scholar]
- Kabašinskas, A.; Sakalauskas, L.; Sun, W.; Belovas, I. Mixed-stable models for analyzing high-frequency financial data. J. Comput. Anal. Appl. 2012, 14, 1210–1226. [Google Scholar]
- Dacorogna, R.; Gençay, U.; Müller, A.; Olsen, R.; Pictet, O. An Introduction of High-Frequency Finance; Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Nolan, J.P. Univariate Stable Distributions. Models for Heavy Tailed Data; Springer International Publishing: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Cizek, P.; Hardle, W.; Weron, R. Statistical Tools for Finance and Insurance; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Cont, R. Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Financ. 2001, 1, 223–236. [Google Scholar] [CrossRef]
- Celik, N.; Erden, S.; Sarikaya, M. Comparing the estimation methods of stable distributions with respect to robustness properties. In International Conference on Advances in Natural and Applied Sciences Proceedings; AIP Publishing: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Corless, R.; Gonnet, G.; Hare, D.; Jeffrey, D.; Knuth, D. On the Lambert W function. Adv. Comput. Math. 1996, 5, 329–359. [Google Scholar] [CrossRef]
- Chapeau-Blondeau, F.; Monir, A. Evaluation of the Lambert W Function and Application to Generation of Generalized Gaussian Noise With Exponent 1/2. IEEE Trans. Signal Process. 2002, 50, 2160–2165. [Google Scholar] [CrossRef] [Green Version]
- Koutrouvelis, I.; Kellermeier, J. Goodness-of-fit test based on the empirical characteristic function when parameters must be estimated. J. R. Stat. Soc. Ser. B 1981, 43, 173–176. [Google Scholar] [CrossRef]
Company | , Sec. | Mean | St. Dev. | Skewness | Kurtosis | Zeros, % |
---|---|---|---|---|---|---|
Adidas AG | 10 | 0.0004 | 2.1461 | 704.98 | 75.32 | |
100 | 0.0011 | 2.3129 | 142.39 | 22.96 | ||
1000 | 0.0029 | 0.5036 | 20.285 | 6.00 | ||
Deutsche Bank | 10 | 0.0004 | −2.1778 | 1246.5 | 47.07 | |
100 | 0.0010 | −1.1853 | 253.86 | 9.15 | ||
1000 | 0.0031 | −0.0737 | 31.182 | 2.59 | ||
BASF SE | 10 | 0.0003 | −2.3481 | 590.28 | 57.90 | |
100 | 0.0009 | −0.6817 | 96.550 | 10.90 | ||
1000 | 0.0027 | 0.4249 | 29.408 | 2.80 | ||
BMW AG St | 10 | 0.0004 | −1.1297 | 870.09 | 67.96 | |
100 | 0.0010 | −0.9190 | 147.39 | 18.38 | ||
1000 | 0.0029 | −0.2380 | 21.901 | 5.02 | ||
Deutsche Börse | 10 | 0.0009 | −560.34 | 422,496 | 68.42 | |
100 | 0.0028 | −196.46 | 48,486.4 | 14.64 | ||
1000 | 0.0086 | −64.547 | 5074.6 | 2.47 | ||
SAP AG | 10 | 0.0004 | −13.423 | 2818.2 | 57.62 | |
100 | 0.0011 | −6.5862 | 566.56 | 17.93 | ||
1000 | 0.0031 | −4.9374 | 170.55 | 6.14 |
, Sec. | Min Length | Max Length | Min Zero % | Max Zero % |
---|---|---|---|---|
10 | 135,001 | 436,143 | 43 | 82 |
100 | 3612 | 71,388 | 7 | 43 |
1000 | 6051 | 7385 | 2 | 20 |
1.965528 | 1.965528 | 1.965528 | 1.965528 | 1.965528 | ||
0.984687 | 0.984687 | 0.984687 | 0.984687 | 0.984687 | ||
0.000008 | 0.000008 | 0.000008 | 0.000008 | 0.000008 | ||
0.000531 | 0.000531 | 0.000531 | 0.000531 | 0.000531 | ||
PT | 310.16 | 349.92 | 375.17 | 401.31 | 439.55 | |
KT | Rejected | Rejected | Rejected | Rejected | Rejected | |
1.963816 | 1.933809 | 1.933809 | 1.933809 | 1.933809 | ||
0.984264 | 0.030693 | 0.030699 | 0.030694 | 0.030695 | ||
0.000005 | 0.000001 | 0.000001 | 0.000001 | 0.000001 | ||
0.000531 | 0.000518 | 0.000518 | 0.000518 | 0.000518 | ||
PT | 326.91 | 394.04 | 429.73 | 457.26 | 504.21 | |
KT | Rejected | Accepted | Accepted | Accepted | Accepted | |
1.969975 | 1.933809 | 1.933809 | 1.933809 | 1.933809 | ||
0.981810 | 0.030695 | 0.030696 | 0.030695 | 0.030695 | ||
−0.000000 | 0.000001 | 0.000001 | 0.000001 | 0.000001 | ||
0.000528 | 0.000518 | 0.000518 | 0.000518 | 0.000518 | ||
PT | 359.80 | 398.40 | 432.18 | 469.62 | 511.38 | |
KT | Rejected | Accepted | Accepted | Accepted | Accepted | |
1.969975 | 1.933809 | 1.933809 | 1.933809 | 1.933809 | ||
0.981810 | 0.030695 | 0.030696 | 0.030695 | 0.030695 | ||
−0.000000 | 0.000001 | 0.000001 | 0.000001 | 0.000001 | ||
0.000528 | 0.000518 | 0.000518 | 0.000518 | 0.000518 | ||
PT | 362.98 | 401.10 | 436.79 | 466.31 | 515.46 | |
KT | Rejected | Accepted | Accepted | Accepted | Accepted |
3400.24 (-) | 3934.80 (-) | 4358.86 (-) | 4898.37 (-) | 5604.82 (-) | |
3763.15 (-) | 4269.03 (-) | 4727.41 (-) | 5242.13 (-) | 6062.17 (-) | |
8671.90 (3) | 5762.27 (1) | 6224.88 (1) | 6088.49 (2) | 6403.56 (-) | |
8810.85 (3) | 9238.92 (3) | 8484.65 (3) | 6268.37 (3) | 12,094.20 (3) |
Company | r | KT | ||||
---|---|---|---|---|---|---|
Adidas AG | 0.75 | 1.813224 | 0.004395 | 0.000002 | 0.000456 | 1 |
Deutsche Bank | 0.47 | 1.822488 | −0.013724 | −0.000001 | 0.000272 | 1 |
BASF SE | 0.58 | 1.798121 | 0.009887 | 0.000001 | 0.000292 | 1 |
BMW AG St | 0.68 | 1.872899 | −0.024771 | 0.000000 | 0.000405 | 1 |
Continental AG | 0.66 | 1.704703 | −0.007413 | 0.000000 | 0.000363 | 1 |
Deutsche Post | 0.75 | 1.933809 | 0.030695 | 0.000001 | 0.000518 | 1 |
Deutsche Telekom | 0.73 | 1.995341 | −0.064854 | 0.000001 | 0.000572 | 0 |
Bayer AG O.N. | 0.60 | 1.875897 | 0.023037 | 0.000001 | 0.000364 | 1 |
FMC AG | 0.77 | 1.759640 | −0.014327 | 0.000000 | 0.000484 | 0 |
Deutsche Börse | 0.68 | 1.664209 | 0.015807 | 0.000003 | 0.000413 | 1 |
MAN SE St | 0.68 | 1.669219 | 0.001631 | 0.000002 | 0.000443 | 1 |
Henkel AG | 0.77 | 1.769518 | −0.031952 | 0.000000 | 0.000511 | 0 |
Infineon Techn. | 0.82 | 1.979982 | −0.045985 | −0.000004 | 0.000803 | 0 |
Linde AG | 0.74 | 1.714015 | −0.007574 | 0.000002 | 0.000367 | 1 |
Merck KGaA | 0.77 | 1.612534 | 0.003719 | 0.000000 | 0.000442 | 1 |
RWE AG St | 0.58 | 1.852625 | 0.025781 | 0.000001 | 0.000330 | 1 |
Daimler AG | 0.49 | 1.853430 | 0.039817 | 0.000001 | 0.000322 | 1 |
SAP AG | 0.58 | 1.919404 | 0.012302 | 0.000000 | 0.000384 | 1 |
Siemens AG | 0.46 | 1.815861 | −0.002928 | 0.000001 | 0.000276 | 1 |
METRO AG St | 0.75 | 1.767016 | 0.044610 | 0.000004 | 0.000393 | 1 |
ThyssenKrupp | 0.68 | 1.855014 | −0.000734 | 0.000001 | 0.000461 | 1 |
Volkswagen AG St | 0.59 | 1.744243 | −0.004622 | 0.000002 | 0.000302 | 1 |
Deutsche Postbank | 0.79 | 1.678412 | −0.005400 | 0.000000 | 0.000519 | 1 |
HYPO RE | 0.75 | 1.814879 | 0.027742 | 0.000000 | 0.000576 | 1 |
Commerzbank AG | 0.66 | 1.901063 | −0.007980 | 0.000000 | 0.000477 | 1 |
Deutsche Lufthansa | 0.78 | 1.932395 | −0.016547 | 0.000000 | 0.000587 | 1 |
Allianz SE | 0.43 | 1.787790 | −0.016081 | 0.000000 | 0.000255 | 1 |
Münchener Rück | 0.59 | 1.779122 | 0.006533 | 0.000000 | 0.000271 | 1 |
TUI AG | 0.80 | 1.903315 | 0.012532 | 0.000003 | 0.000699 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belovas, I.; Sakalauskas, L.; Starikovičius, V.; Sun, E.W. Mixed-Stable Models: An Application to High-Frequency Financial Data. Entropy 2021, 23, 739. https://doi.org/10.3390/e23060739
Belovas I, Sakalauskas L, Starikovičius V, Sun EW. Mixed-Stable Models: An Application to High-Frequency Financial Data. Entropy. 2021; 23(6):739. https://doi.org/10.3390/e23060739
Chicago/Turabian StyleBelovas, Igoris, Leonidas Sakalauskas, Vadimas Starikovičius, and Edward W. Sun. 2021. "Mixed-Stable Models: An Application to High-Frequency Financial Data" Entropy 23, no. 6: 739. https://doi.org/10.3390/e23060739
APA StyleBelovas, I., Sakalauskas, L., Starikovičius, V., & Sun, E. W. (2021). Mixed-Stable Models: An Application to High-Frequency Financial Data. Entropy, 23(6), 739. https://doi.org/10.3390/e23060739