A Unified Cropland Layer at 250 m for Global Agriculture Monitoring
<p>The Unified Cropland Layer at 250 m for 2014.</p> "> Figure 2
<p>Receiver Operator Characteristics curves with the (<b>a</b>) geoWiki; (<b>b</b>) GlobCover 2005 and (<b>c</b>) VIIRS validation data sets.</p> "> Figure 3
<p>Distribution of the reference samples used for the validation of the 250 m Unified Cropland Layer.</p> ">
Abstract
:1. Summary
2. Data Description
2.1. Data and Metadata
2.2. Accuracy Assessment
2.3. Perspectives of Evolution
3. Material
3.1. Land Cover and Cropland Maps
3.2. Global Validation Data Sets and Ancillary Data
4. Methodology
- Constructing a spatial information data base;
- Translating the criteria into scores;
- Defining the weight of each criterion;
- Aggregating the criteria in the output index and selecting the product that maximizes this index
4.1. Thematic Consistency Criterion
- Absence of woody crops (WC);
- Presence of fallows and bare fields (FB);
- Absence of managed pasture and meadows (MPM).
4.2. Timeliness Criterion
4.3. Resolution Adequacy Criterion
4.4. Confidence Level Criterion
5. User Notes
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zou, W.; Zheng, Y.; Zhang, N.; Chang, S.; Xing, Q.; et al. Global Crop Monitoring: A Satellite-Based Hierarchical Approach. Remote Sens. 2015, 7, 3907–3933. [Google Scholar]
- Hannerz, F.; Lotsch, A. Assessment of remotely sensed and statistical inventories of African agricultural fields. Int. J. Remote Sens. 2008, 29, 3787–3804. [Google Scholar] [CrossRef]
- Vancutsem, C.; Marinho, E.; Kayitakire, F.; See, L.; Fritz, S. Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale. Remote Sens. 2012, 5, 19–41. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.; Bala, G.; Duffy, P. Biogeophysical impacts of cropland management changes on climate. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Yu, L.; Wang, J.; Clinton, N.; Xin, Q.; Zhong, L.; Chen, Y.; Gong, P. FROM-GC: 30 m global cropland extent derived through multisource data integration. Int. J. Digit. Earth 2013, 6, 521–533. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Wu, Z. An automated cropland classification algorithm (ACCA) for Tajikistan by combining Landsat, MODIS, and secondary data. Remote Sens. 2012, 4, 2890–2918. [Google Scholar]
- Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year MODIS data. Remote Sens. 2010, 2, 1844–1863. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1–13. [Google Scholar] [CrossRef]
- Matton, N.; Canto, G.S.; Waldner, F.; Valero, S.; Morin, D.; Inglada, J.; Arias, M.; Bontemps, S.; Koetz, B.; Defourny, P. An Automated Method for Annual Cropland Mapping along the Season for Various Globally-Distributed Agrosystems Using High Spatial and Temporal Resolution Time Series. Remote Sens. 2015, 7, 13208–13232. [Google Scholar] [CrossRef]
- Bartholomé, E.; Belward, A. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Defourny, P.; Schouten, L.; Bartalev, S.; Bontemps, S.; Cacetta, P.; Gérard, B.; Giri, C.; Gond, V.; Hazeu, G.; Heinimann, A.; et al. Accuracy assessment of a 300 m global land cover map: The GlobCover experience. In Proceedings of the 33rd International Symposium on Remote Sensing of Environment, Stresa, Italy, May 2009.
- Arino, O.; Bicheron, P.; Achard, F.; Latham, J.; Witt, R.; Weber, J.L. The most detailed portrait of Earth. Eur. Space Agency 2008, 136, 25–31. [Google Scholar]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.; Zhang, X.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Defourny, P.; Kirches, G.; Brockmann, C.; Boettcher, M.; Peters, M.; Bontemps, S.; Lamarche, C.; Schlerf, M.; Santoro, M. Land Cover CCI. In PRODUCT USER GUIDE VERSION 2; 2012. [Google Scholar]
- Fritz, S.; See, L.; McCallum, I.; Schill, C.; Obersteiner, M.; Van der Velde, M.; Boettcher, H.; Havlík, P.; Achard, F. Highlighting continued uncertainty in global land cover maps for the user community. Environ. Res. Lett. 2011, 6, 044005. [Google Scholar] [CrossRef]
- Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 2008, 22. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 2607–2654. [Google Scholar] [CrossRef]
- Biradar, C.M.; Thenkabail, P.S.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; Gumma, M.K.; Gangalakunta, O.R.P.; Cai, X.L.; et al. A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 114–129. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Biradar, C.M.; Noojipady, P.; Dheeravath, V.; Li, Y.; Velpuri, M.; Gumma, M.; Gangalakunta, O.R.P.; Turral, H.; Cai, X.; et al. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30, 3679–3733. [Google Scholar] [CrossRef]
- Setegn, S.G.; Srinivasan, R.; Dargahi, B.; Melesse, A.M. Spatial delineation of soil erosion vulnerability in the Lake Tana Basin, Ethiopia. Hydrol. Process. 2009, 23, 3738–3750. [Google Scholar] [CrossRef]
- Bian, L.; Butler, R. Comparing effects of aggregation methods on statistical and spatial properties of simulated spatial data. Photogramm. Eng. Remote Sens. 1999, 65, 73–84. [Google Scholar]
- Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [PubMed]
- Fawcett, T. Introduction to Receiver Operator Curves. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; McCallum, I.; You, L.; Bun, A.; Moltchanova, E.; Duerauer, M.; Albrecht, F.; Schill, C.; Perger, C.; et al. Mapping global cropland and field size. Glob. Chang. Biol. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latham, J.; Cumani, R.; Rosati, I.; Bloise, M. Global Land Cover SHARE (GLC-SHARE) Database Beta-Release Version 1.0; Global Land Cover Network: Rome, Italy, 2014. [Google Scholar]
- Eidenshink, J.C.; Faundeen, J.L. The 1 km AVHRR global land data set: First stages in implementation. Int. J. Remote Sens. 1994, 15, 3443–3462. [Google Scholar] [CrossRef]
- Tateishi, R.; Hoan, N.T.; Kobayashi, T.; Alsaaideh, B.; Tana, G.; Phong, D.X. Production of Global Land Cover Data–GLCNMO2008. J. Geogr. Geol. 2014, 6. [Google Scholar] [CrossRef]
- Blanco, P.D.; Colditz, R.R.; Saldaña, G.L.; Hardtke, L.A.; Llamas, R.M.; Mari, N.A.; Fischer, A.; Caride, C.; Aceñolaza, P.G.; Del Valle, H.F.; et al. A land cover map of Latin America and the Caribbean in the framework of the SERENA project. Remote Sens. Environ. 2013, 132, 13–31. [Google Scholar] [CrossRef]
- Verhegghen, A.; Mayaux, P.; De Wasseige, C.; Defourny, P. Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation. Biogeosciences 2012, 9, 5061–5079. [Google Scholar] [CrossRef] [Green Version]
- Miettinen, J.; Shi, C.; Tan, W.J.; Liew, S.C. 2010 land cover map of insular Southeast Asia in 250-m spatial resolution. Remote Sens. Lett. 2012, 3, 11–20. [Google Scholar] [CrossRef]
- Klein, I.; Gessner, U.; Kuenzer, C. Regional land cover mapping and change detection in Central Asia using MODIS time-series. Appl. Geogr. 2012, 35, 219–234. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A.; Krankina, O.N.; Baccini, A.; Woodcock, C.E.; Sibley, A.; Sun, G.; Kharuk, V.; Elsakov, V. Hierarchical mapping of Northern Eurasian land cover using MODIS data. Remote Sens. Environ. 2011, 115, 392–403. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Takahashi, M.; Nasahara, K.N.; Tadono, T.; Watanabe, T.; Dotsu, M.; Sugimura, T.; Tomiyama, N. JAXA High Resolution Land-Use and Land-Cover Map; Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International: Melbourne, Australia, July 2013; pp. 2384–2387. [Google Scholar]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Lymburner, L.; Australia, G. The National Dynamic Land Cover Dataset; Geoscience Australia: Canberra, Australia, 2011. [Google Scholar]
- Sreenivas, K.; Sekhar, N.S.; Saxena, M.; Paliwal, R.; Pathak, S.; Porwal, M.; Fyzee, M.; Rao, S.K.; Wadodkar, M.; Anasuya, T.; et al. Estimating inter-annual diversity of seasonal agricultural area using multi-temporal resourcesat data. J. Environ. Manag. 2015, 161, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Holecz, F.; Collivignarelli, F.; Barbieri, M.; Gatti, L.; Boschetti, M.; Manfron, G.; Brivio, P.A.; Abukari, M.; Bondo, T. Establishing National Baseline Land Cover Map Including Annual and Seasonal Variations for the Understanding of Current Agricultural Practices in the Gambia; National Agricultural Land and Water Management Development Project (Nema), 2013; unpublished. [Google Scholar]
- Lavreniuk, M.; Kussul, N.; Skakun, S.; Shelestov, A.; Yailymov, B. Regional retrospective high resolution land cover for Ukraine: methodology and results (Submitted). In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2015), Milan, Italy, 26–31 July 2015.
- Bartalev, S.A.; Plotnikov, D.E.; Loupian, E.A. Mapping of arable land in Russia using multiyear time series of MODIS data and the LAGMA classification technique. Rem. Sens. Let. 2016, 7, 269–278. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, P.; Yu, L.; Hu, L.; Li, X.; Li, C.; Zhang, H.; Zheng, Y.; Wang, J.; Zhao, Y.; et al. Towards a common validation sample set for global land-cover mapping. Int. J. Remote Sens. 2014, 35, 4795–4814. [Google Scholar] [CrossRef]
- Olofsson, P.; Stehman, S.V.; Woodcock, C.E.; Sulla-Menashe, D.; Sibley, A.M.; Newell, J.D.; Friedl, M.A.; Herold, M. A global land-cover validation data set, part I: Fundamental design principles. Int. J. Remote Sens. 2012, 33, 5768–5788. [Google Scholar] [CrossRef]
- Stehman, S.V.; Olofsson, P.; Woodcock, C.E.; Herold, M.; Friedl, M.A. A global land-cover validation data set, II: Augmenting a stratified sampling design to estimate accuracy by region and land-cover class. Int. J. Remote Sens. 2012, 33, 6975–6993. [Google Scholar] [CrossRef]
- Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; Grillmayer, R.; Achard, F.; Kraxner, F.; Obersteiner, M. Geo-Wiki.org: The use of crowdsourcing to improve global land cover. Remote Sens. 2009, 1, 345–354. [Google Scholar] [CrossRef]
- Fritz, S.; McCallum, I.; Schill, C.; Perger, C.; See, L.; Schepaschenko, D.; van der Velde, M.; Kraxner, F.; Obersteiner, M. Geo-Wiki: An online platform for improving global land cover. Environ. Model. Softw. 2012, 31, 110–123. [Google Scholar] [CrossRef]
- Mourão, K.R.M.; Sousa Filho, P.W.M.; de Oliveira Alves, P.J.; Frédou, F.L. Priority areas for the conservation of the fish fauna of the Amazon Estuary in Brazil: A multicriteria approach. Ocean Coast. Manag. 2014, 100, 116–127. [Google Scholar] [CrossRef]
- Waldner, F.; Fritz, S.; Di Gregorio, A.; Defourny, P. Mapping priorities to focus cropland mapping activities: Fitness assessment of existing global, regional and national cropland maps. Remote Sens. 2015, 7, 7959–7986. [Google Scholar] [CrossRef] [Green Version]
- Committee on Earth Observation Satellites. CEOS Acquisition Strategy for GEOGLAM Phase 1—Version 1.0; 2013. [Google Scholar]
Characteristic | Description |
---|---|
Data format | GeoTiff |
Epoch | 2014 |
Coordinate system | latitude/longitude WGS84 (EPSG:4326) |
Image dimensions | 172,800 × 83,294 (rows × columns) |
Size | 355 MB |
Data type | Byte using LZW compression |
No Data value | 255 |
Number of layers | 1 |
Value | Cropland proportion in percent |
Data range | 0–100 |
(a) Confusion matrix obtained with the GlobCover2005 data set | |||
Non-Cropland | Cropland | Users’ Accuracy [%] | |
Non-Cropland | 158 | 9 | 94.6 |
Cropland | 2 | 16 | 88.9 |
Producers’ Accuracy [%] | 98.8 | 64.0 | Overall Accuracy [%]: 94.1 |
(b) Confusion matrix obtained with the VIIRS data set | |||
Non-Cropland | Cropland | Users’ Acc. (%) | |
Non-Cropland | 631 | 63 | 90.9 |
Cropland | 251 | 985 | 79.7 |
Producers’ Accuracy [%] | 71.5 | 94.0 | Overall Accuracy [%]: 83.7 |
(c) Confusion matrix obtained with the geoWiki data set | |||
Non-Cropland | Cropland | Users’ Acc. (%) | |
Non-Cropland | 8490 | 1698 | 83.3 |
Cropland | 384 | 2055 | 84.3 |
Producers’ Accuracy [%] | 95.7 | 54.8 | Overall Accuracy [%]: 83.5 |
Extent | Product Name-Reference | Epoch |
---|---|---|
Global | FROM-GLC [18] | 2013 |
Global Cropland extent [7] | 2000–2008 | |
GlobCover 2009 [13] | 2009 | |
ESA LandCover CCI [15] | 2008–2012 | |
MOD12Q1 NASA | 2005 | |
FAO GLC-Share [28] | 1990–2012 | |
IIASA-IFPRI Cropland [27] | 1990–2012 | |
GLC2000 [11] | 1999–2000 | |
IGBP [29] | 1992–1993 | |
GLCNMO [30] | 2007–2009 | |
Regional | Corine Land Cover EEA | 2006, 2012 |
SADC land cover database-CSIR | 2002 | |
JRC Cropland Mask [3] | 2012 | |
North American Environmental Atlas CEC | 2005 | |
SERENA LAC [31] | 2008 | |
Congo Basin Map [32] | 2000–2007 | |
SEA CRISP [33] | 2010 | |
Land Cover of Central Asia [34] | 2009 | |
Northern Eurasia Land Cover (NELC) [35] | 2005 | |
Uzbekistan, Tajikistan, Kyrgyzstan, Turkmenistan | Wurzburg University | 2003 |
Congo, Burundi, Egypt, Eritrea, Kenya, Rwanda, Somalia, Sudan, Tanzania, Uganda | Africover FAO | 1999–2001 |
Senegal, Bhutan, Nepal | Global Land Cover Network | 2005–2007 |
France, Belgium, The Netherlands | Land Parcel Identification System | 2012–2014 |
Barbados, Rep Dom, Dominica, Grenada, Puerto Rico, Saint Kit and Nevis US and B Virgin Islands | USGS | 2000–2001 |
Fiji, Solomon Islands, Timor Leste, Niue, Naurau, Palau, Tonga, Tuvalu, Vanuatu, Kiribati, Marshall Islands, Micronesia, Cook Islands | SOPAC | 1999-2010 |
Botswana, Namibia, Rwanda, Zambia, Tanzania, Malawi | Land Cover Scheme II SERVIR | 2010 |
China | GlobeLand30 NGCC [36] | 2009–2011 |
Japan | JAXA HR LU-LCMap [37] | 2006–2011 |
Tajikistan | ACCA [6] | 2010 |
Burkina Faso | Corine Database of Burkina Faso | 2000 |
Canada | Annual Crop Inventory-AAFC | 2013 |
USA | Cropland Data Layer USDA | 2013 |
China | National Land Cover Map of China [38] | 1995–1996 |
Australia | Digital Land Cover Database GA-Australia [39] | 2011 |
Cambodia | JICA Land Cover of Cambodia | 2002 |
New Zealand | Land Cover DataBase v4 Ministry for the Environment | 2004 |
South Africa | National Land Cover CSIR | 2000–2001 |
South Africa | National Land Cover SANBI | 2009 |
Canada | National Resources of Canada | 2005 |
Uruguay | Land Cover Uruguay UNA-ONU | 2010 |
Mexico | Land Cover of Mexico CONABIO | 1999 |
Argentina | Cobertura y uso del suelo-INTA | 2006 |
Ecuador | Uso del Suelo departamento de Inf. Ambiental | 2001 |
Thailand | Royal Forest Department of Thailand | 2000 |
Chile | Chile Corporacion Nacional Forestal | 1999 |
India | Land Use Land Cover of India NRSC [40] | 2011–2012 |
Gambia | [41] | 2013 |
Ukraine | Land Cover Ukraine [42] | 2010 |
Russia | TerraNorte Arable Lands of Russia [43] | 2014 |
Validation Set | Geometry | Sample Size | Cropland [%] | Use |
---|---|---|---|---|
Zhao et al. | Point | 38 664 | 7 | Multi-criteria analysis |
GlobCover 2005 | Polygon (225 ha) | 186 | 9 | Validation |
VIIRS | Polygon (5 × 5 km) | 3664 | 27 | Validation |
geoWiki | Polygon (1× 1 km) | 12 833 | 29 | Validation |
(a) Rules for the thematic criterion | ||
Thematic Criterion | Code | Score |
3 | Good Thematic Agreement | 4 |
2 | Moderate Thematic agreement | 3 |
1 | Low Thematic agreement | 2 |
0 | No thematic agreement | 1 |
(b) Rules for the timeliness criterion | ||
Timeliness Criterion | Code | Score |
1–2 | Up to date | 4 |
2–5 | Recent | 3 |
5–10 | Old | 2 |
10> | Out of date | 1 |
(c) Rules for the resolution adequacy criterion | ||
Resolution Adequacy Criterion | Code | Score |
>0 | Perfectly adequate | 4 |
1 | Adequate | 3 |
2 | Inadequate | 2 |
3 | Totally Inadequate | 1 |
(d) Confidence Level Scoring | ||
Confidence Level Criterion | Code | Score |
80%–100% | High Confidence Level | 4 |
70%–80% | Good Confidence Level | 3 |
60%–70% | Low Confidence | 2 |
0%–60% | Very Low Confidence Level | 1 |
GeoWiki Field Size | GEOGLAM Field Size (ha) | GEOGLAM Resolution Requirements (m) |
---|---|---|
Large | >15 | 100–500 |
Medium | >1.5 | 20–100 |
Small | >0.15 | 5–20 |
Very Small | <0.15 | <5 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waldner, F.; Fritz, S.; Di Gregorio, A.; Plotnikov, D.; Bartalev, S.; Kussul, N.; Gong, P.; Thenkabail, P.; Hazeu, G.; Klein, I.; et al. A Unified Cropland Layer at 250 m for Global Agriculture Monitoring. Data 2016, 1, 3. https://doi.org/10.3390/data1010003
Waldner F, Fritz S, Di Gregorio A, Plotnikov D, Bartalev S, Kussul N, Gong P, Thenkabail P, Hazeu G, Klein I, et al. A Unified Cropland Layer at 250 m for Global Agriculture Monitoring. Data. 2016; 1(1):3. https://doi.org/10.3390/data1010003
Chicago/Turabian StyleWaldner, François, Steffen Fritz, Antonio Di Gregorio, Dmitry Plotnikov, Sergey Bartalev, Nataliia Kussul, Peng Gong, Prasad Thenkabail, Gerard Hazeu, Igor Klein, and et al. 2016. "A Unified Cropland Layer at 250 m for Global Agriculture Monitoring" Data 1, no. 1: 3. https://doi.org/10.3390/data1010003
APA StyleWaldner, F., Fritz, S., Di Gregorio, A., Plotnikov, D., Bartalev, S., Kussul, N., Gong, P., Thenkabail, P., Hazeu, G., Klein, I., Löw, F., Miettinen, J., Dadhwal, V. K., Lamarche, C., Bontemps, S., & Defourny, P. (2016). A Unified Cropland Layer at 250 m for Global Agriculture Monitoring. Data, 1(1), 3. https://doi.org/10.3390/data1010003