Experimental Verification of Yam (Dioscorea rotundata) Drying with Solar Adsorption Drying
<p>Solar-adsorbent dryer (SAD). 1→2→3: air flow during drying, 4→5→3: air flow during night drying, 6→7→8: air flow for regeneration during day-time.</p> "> Figure 2
<p>Solar-adsorbent dryer system (SADS) showing locations of K-type thermocouple for the temperature measurement (T1-T8) at input and output of each unit.</p> "> Figure 3
<p>Drier cabinet input and output air temperatures T4 and T5 (night), T2 and T3 (day) for SAD (top graph), T2 and T3 (day) for SD (middle graph) and ambient temperature T1 for OSD (See <a href="#applsci-09-03927-f002" class="html-fig">Figure 2</a>) and radiation (bottom graph). The grey portions represent the night drying.</p> "> Figure 4
<p>Average moisture content over all trays of yam particles (‘Dente’) for different drying methods, SAD, SD and OSD. The grey portions represent night drying.</p> "> Figure 5
<p>Moisture content of yam particles (‘Dente’) at different positions in the dryers as a function of time for SAD, SD and OSD. The grey portions represent night drying.</p> "> Figure 6
<p>Effect of different drying methods on vitamin C retention in <span class="html-italic">Dioscorea rotundata</span>. Those bars with the same letters are not significantly different at <span class="html-italic">p</span> < 0.05.</p> "> Figure 7
<p>Drier cabinet input and output air temperatures T4 and T5 (night), T2 and T3 (day) for SAD (top graph), T2 and T3 (day) for SD (middle graph) and ambient temperature T1 for OSD (See <a href="#applsci-09-03927-f002" class="html-fig">Figure 2</a>) and radiation (bottom graph). The grey portions represent the night drying.</p> "> Figure 8
<p>Comparison of drying methods on different varieties of yam. The grey portions represent night drying.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Material and Sample Preparation
2.2. Description of Dryer Systems
2.3. Temperature, Air Velocity and Weight Measurements
2.4. Chemical Analysis
2.5. Vitamin C Content
2.6. Instrumental Determination of Color
2.7. Experimental Procedure
2.8. Experimental Design and Statistical Analysis
3. Results
3.1. Performance of SAD Drying
3.2. Drying Different Yam Cultivars
3.2.1. Operational Conditions
3.2.2. Drying Effect on Cultivars and Composition
3.3. Vitamin C and Color of Dried Yam
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Institute of Tropical Agriculture. Operation Manual for the Series 3 Root Tubers Processing; Newport Scientific property Ltd.: Warriewood, Australia; Standard University Press: Stanford, CA, USA, 2007; p. 315. [Google Scholar]
- Ferede, R.; Maziya-Dixon, B.; Alamu, E.O.; Asiedu, R. Identification and quantification of major carotenoids of deep yellow flagled yam (tropical Dioscorea dumentorum). J. Food Agric. Environ. 2010, 13, 703–706. [Google Scholar]
- Fioreze, R.; Morini, B. Yam (Dioscorea sp.) Drying with different cuts andtemperatures: experimental and simulated results. Ciênc. Tecnol. Aliment. 2000, 20, 262–266. [Google Scholar] [CrossRef]
- Xiao, H.W.; Pang, C.L.; Wang, L.H.; Bai, J.W.; Yang, W.X.; Gao, Z.J. Drying kinetics and quality of monkka seedless grapes dried in an air impingement jet dryer. Biosyst. Eng. 2010, 105, 233–240. [Google Scholar] [CrossRef]
- Berinyuy, J.E.; Tangka, J.K.; Fotso, G.M. Enhancing natural convection solar drying of high moisture vegetables with heat storage. Agric. Eng. Int. CIGR J. 2012, 14, 141–148. [Google Scholar]
- Arinze, E.A.; Adefila, S.S.; Eke, B.A. Experimental evaluation of various designs of free-convection solar crop dryer with and without thermal storage. In Proceedings of the National Conference of Nigerian Society of Agricultural Engineers, Makurdi, Nigeria, 30–31 October 1990; pp. 15–19. [Google Scholar]
- Basuinia, M.A.; Abe, T. Design and construction of simple three shelf solar rough rice dryer. J. Agric. Mech. Asia Afr. Lat. Am. 2001, 32, 54–55. [Google Scholar]
- El-Beltagy, A.; Gamea, G.R.; Essa, A.H.A. Solar drying characteristics of strawberry. J. Food Eng. 2007, 78, 456–464. [Google Scholar] [CrossRef]
- Erenturk, S.; Gulaboglu, M.S.; Gultekin, S. The effects of cutting and drying medium on the vitamin C content of rosehip during drying. J. Food Eng. 2005, 68, 513–518. [Google Scholar] [CrossRef]
- Davey, M.W.; Montagu, M.; Inze, D.; Sanmartin, M.; Benzie, J.J. Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Skrede, G.; Wrolstad, R.E.; Durst, R.W. Changes in Anthocyanins and Polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). J. Food Sci. Sens. Nutr. Qual. Food 2000, 65, 357–364. [Google Scholar] [CrossRef]
- Giovanelli, G.; Buratti, S. Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem. 2009, 112, 903–908. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Lemus-Mondaca, R.; Tello-Ireland, C.; Miranda, M.; Yagnam, F. Kinetic study of convective drying of blueberry variety O’Neil (Vaccinium corymbosum). Chil. J. Agric. Res. 2009, 69, 171–178. [Google Scholar] [CrossRef]
- Santos, P.H.S.; Silva, M.A. Retention of vitamin C in drying process of fruits and Vegetables—A review. Dry. Technol. 2008, 26, 1421–1437. [Google Scholar]
- Hsu, C.L.; Chen, W.; Weng, Y.M.; Tseng, C.Y. Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods. Food Chem. 2003, 83, 85–92. [Google Scholar] [CrossRef]
- Okaka, J.C.; Okaka, A.N.C. Food: Composition, Spoilage, Shelf-life Extension; OCJANKO Academic Publishers: Enugu, Nigeria, 2001. [Google Scholar]
- Oguntola, J.A.; Collins, N.N.; Olayinka, A. Design and construction of a domestic passive solar food dryer. Leonardo J. Sci. 2010, 16, 71–82. [Google Scholar]
- Hassan, S.W.; Umar, R.A.; Maishanu, H.N.; Matuza, I.K.; Faruk, U.Z.; Sani, A.A. The effect of drying method on nutrients and non-nutrients composition of leaves of Gynandropsis gynandra (Capparaceae). Asian J. Biochem. 2007, 2, 349–353. [Google Scholar]
- Madhlopa, A.; Jones, S.A.; Kalenga Saka, D.J. A solar air heater with composite–Absorber systems for food dehydration. Renew. Energy 2002, 27, 27–37. [Google Scholar] [CrossRef]
- Amankwah, E.A.Y.; Dzisi, K.A.; van Straten, G.; van Willigenburg, L.G.; van Boxtel, A.J.B. Distributed mathematical model supporting design and construction of solar collectors for drying. Dry. Technol. 2017, 35, 1675–1687. [Google Scholar] [CrossRef] [Green Version]
- AOAC. AOAC International Official methods of Analysis, 17th ed.; Method 985.14; AOAC: Gaithersburg, MD, USA, 1990. [Google Scholar]
- AACC. Approved Methods of the AACC, 10th ed.; Methods 44-17; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Ojukwu, U.P.; Nwobi, S.C. Determination of Ascorbic Acid Content of Some Local Fruits in Nigeria. Anal. Chem. Indian J. 2017, 17, 1–5. [Google Scholar]
- Arslan, D.; Özcan, M.M. Study the effect of sun, oven and microwave drying on quality of onion slices. LWT-Food Sci. and Technol. 2010, 43, 1121–1127. [Google Scholar] [CrossRef]
- Doymaz, İ. Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer. 2016, 53, 25–35. [Google Scholar] [CrossRef]
- Dissa, A.O.; Desmoreux, H.; Bathiebo, J.; Koulidiatti, J. A comparative study of direct and indirect solar drying of mango. Glob. J. Pure Appl. Sci. 2011, 17, 273–294. [Google Scholar]
- Oyetade, O.A.; Oyeleke, G.O.; Adegoke, B.M.; Akintunde, A.O. Stability studies on Ascorbic acid (Vitamin C) from different sources. J. Appl. Chem. 2012, 2, 20–24. [Google Scholar]
- Karel, M. Control of lipid oxidation in dried food. In The Concentration and Drying of Foods; Richardson, J., Finley, J.W., Eds.; Elsevier Applied Science: Carlifornia, CA, USA, 1985; pp. 495–512. [Google Scholar]
- Jones, G.P.; Biggs, D.R.; Wahlqvist, M.L.; Flente, L.M.; Shiell, B.J. Dietary fibre content of Australian foods, Fruits and fruits products. Food Aust. 1990, 42, 143–145. [Google Scholar]
- Matalas, A.L.; Zampelas, A.; Stavrinos, J. The Mediterranean Diet; CRC Press ICC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Jin, X.; van der Sman, R.G.M.; van Boxtel, A.J.B. Evaluation of the Free Volume Theory to predict moisture transport and quality changes during broccoli drying. Dry. Technol. 2011, 29, 1963–1971. [Google Scholar] [CrossRef]
- Hodali, R.; Bougard, J. Integration of a desiccant unit in crops solar drying installation: Optimization by numerical simulation. Energy Convers. Manag. 2001, 42, 1543–1558. [Google Scholar] [CrossRef]
Objective of Experiment | Start | Duration | Chemical Analysis | Sensors/Probe | No. of Cultivars |
---|---|---|---|---|---|
Performance of SAD | Night | 3–5 days | Vitamin C in fresh and dried product | K-type thermocouple | 1 |
Night | 6 h | ||||
Day | 9 h | ||||
Drying different yam cultivars | Morning | 4–9 days | Vitamin C in fresh and dried product Composition | K-type thermocouple | 3 |
Method/Cultivar | Moisture | Ash | Crude Protein | Crude Fiber | Crude Fat | Carbohydrate |
---|---|---|---|---|---|---|
‘Pona’ | ||||||
Fresh | 1.549 a | 0.020 b | 0.053 a | 0.010 b | 0.003 c | 0.915 a |
SAD | 0.055 c | 0.038 a | 0.040 c | 0.011 a | 0.007 a | 0.906 b |
SD | 0.054 c | 0.037 a | 0.041 c | 0.011 a | 0.007 a | 0.897 b |
OSD | 0.075 b | 0.038 a | 0.046 b | 0.011 a | 0.006 b | 0.895 b |
‘Lilii’ | ||||||
Fresh | 1.872 a | 0.027 b | 0.042 a | 0.013 b | 0.002 b | 0.863 a |
SAD | 0.061 b | 0.036 a | 0.034 b | 0.027 a | 0.006 a | 0.882 a |
SD | 0.062 b | 0.038 a | 0.036 b | 0.027 a | 0.006 a | 0.885 a |
OSD | 0.073 c | 0.039 a | 0.041 a | 0.027 a | 0.006 a | 0.891 a |
‘Dente’ | ||||||
Fresh | 2.063 a | 0.020 b | 0.043 a | 0.011 b | 0.002 b | 0.856 b |
SAD | 0.054 c | 0.030 a | 0.042 b | 0.022 a | 0.006 a | 0.901 b |
SD | 0.055 c | 0.032 a | 0.042 b | 0.022 a | 0.005 a | 0.906 b |
OSD | 0.078 b | 0.032 a | 0.041 b | 0.023 a | 0.006 a | 0.926 a |
Drying Method | Vitamin C |
---|---|
‘Pona’ | |
Fresh | 44.35 a |
SAD | 6.83 b |
SD | 7.06 b |
OSD | 2.37 c |
‘Lilii’ | |
Fresh | 26.71 a |
SAD | 4.77 b |
SD | 4.99 b |
OSD | 1.53 c |
‘Dente’ | |
Fresh | 60.76 a |
SAD | 6.85 c |
SD | 7.77 b |
OSD | 2.32 d |
METHOD/SAMPLE | L* | a* | b* | ∆E |
---|---|---|---|---|
‘Pona’ | ||||
Fresh | 81.83 a | −0.34 b | +14.36 a | |
SAD | 76.87 c | −0.49 a | +7.55 c | 8.81 b |
SD | 78.41 b | −0.22 c | +8.38 b | 7.30 c |
OSD | 65.79 d | −0.06 d | +7.83 c | 17.50 a |
‘Lilii’ | ||||
Fresh | 83.69 a | −1.28 a | +14.34 a | |
SAD | 76.01 b | −0.26 c | +5.75 c | 11.57 c |
SD | 73.30 c | −0.33 b | +4.92 d | 14.06 b |
OSD | 62.67 d | −0.35 b | +7.58 b | 22.10 a |
‘Dente’ | ||||
Fresh | 83.68 a | −1.30 a | +14.98 a | |
SAD | 76.22 b | −0.08 d | +6.08 d | 11.68 b |
SD | 75.32 b | −0.14 c | +6.80 c | 11.75 b |
OSD | 62.49 c | −0.74 b | +7.79 b | 22.38 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amankwah, E.; Kyere, G.; Kyeremateng, H.; van Boxtel, A. Experimental Verification of Yam (Dioscorea rotundata) Drying with Solar Adsorption Drying. Appl. Sci. 2019, 9, 3927. https://doi.org/10.3390/app9183927
Amankwah E, Kyere G, Kyeremateng H, van Boxtel A. Experimental Verification of Yam (Dioscorea rotundata) Drying with Solar Adsorption Drying. Applied Sciences. 2019; 9(18):3927. https://doi.org/10.3390/app9183927
Chicago/Turabian StyleAmankwah, Emmanuel, Gloria Kyere, Herbert Kyeremateng, and Anton van Boxtel. 2019. "Experimental Verification of Yam (Dioscorea rotundata) Drying with Solar Adsorption Drying" Applied Sciences 9, no. 18: 3927. https://doi.org/10.3390/app9183927
APA StyleAmankwah, E., Kyere, G., Kyeremateng, H., & van Boxtel, A. (2019). Experimental Verification of Yam (Dioscorea rotundata) Drying with Solar Adsorption Drying. Applied Sciences, 9(18), 3927. https://doi.org/10.3390/app9183927