Ground-State and Thermodynamical Properties of Uranium Mononitride from Anharmonic First-Principles Theory
<p>Self-Consistent Ab Initio Lattice Dynamics (SCAILD) lattice vibration energies for five temperatures, at constant atomic volume (14.85 Å<sup>3</sup>), as functions of number of SCAILD iterations.</p> "> Figure 2
<p>DFT and CALPHAD (from 300 K) free energies for UN. Open squares refer to SCAILD lattice energies at constant atomic volume (14.85 Å<sup>3</sup>). The DFT electron free energy that includes electronic entropy was added for the solid circles. The solids squares refer to results from volume relaxation (pressure is zero) that includes both electronic and lattice contributions. The lines connecting the symbols are guides to the eye only. The solid line without symbols refers to our CALPHAD results.</p> "> Figure 3
<p>Theoretical models for the heat capacity at ambient pressure, assuming quasi-harmonic and anharmonic phonons. The experimental data are collected from References [<a href="#B4-applsci-09-03914" class="html-bibr">4</a>,<a href="#B7-applsci-09-03914" class="html-bibr">7</a>,<a href="#B8-applsci-09-03914" class="html-bibr">8</a>,<a href="#B12-applsci-09-03914" class="html-bibr">12</a>,<a href="#B13-applsci-09-03914" class="html-bibr">13</a>,<a href="#B15-applsci-09-03914" class="html-bibr">15</a>,<a href="#B19-applsci-09-03914" class="html-bibr">19</a>]. Note, the heat capacity is calculated per gram-atom (g-at.) of N<sub>2</sub> and 1 mol of N<sub>2</sub>, which is equivalent to 1 gram-molecule of N<sub>2</sub>, contains 2 gram-atoms of N<sub>2</sub>.</p> ">
Abstract
:1. Introduction
2. Computational Methods
2.1. Electronic Structure Method
2.2. Self-Consistent Ab Initio Lattice Dynamics Method (SCAILD)
2.3. CALPHAD Method
3. Results
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kempter, C.P.; Elliott, R.O. Thermal expansion of <UN>, <UO2>, <UO2•ThO2>, and <ThO2>. J. Chem. Phys. 1959, 30, 1524–1526. [Google Scholar] [CrossRef]
- Speidel, E.O.; Keller, D.J. Fabrication and Properties of Hot-Pressed Uranium Mononitride; BMI-1633; Battelle Memorial Institute: Columbus, OH, USA, 1963. [Google Scholar] [CrossRef]
- Curry, N.A. An investigation of the magnetic structure of uranium nitride by neutron diffraction. Proc. Phys. Soc. 1965, 86, 1193–1198. [Google Scholar] [CrossRef]
- Westrum, E.G.; Barber, C.M. Uranium mononitride: Heat capacity and thermodynamic properties from 5 to 350 K. J. Chem. Phys. 1966, 45, 635–638. [Google Scholar] [CrossRef]
- Councell, J.F.; Dell, R.M.; Martin, J.F. Thermodynamic properties of uranium compounds. Part 2.—Low-temperature heat capacity and entropy of three uranium nitrides. Trans. Faraday Soc. 1966, 62, 1736–1747. [Google Scholar] [CrossRef]
- Padel, A.; De Novion, C.H. Constantes elastiques des carbides, nitrides et oxydes d’uranium ed de plutonium. J. Nucl. Mater. 1969, 33, 40–51. [Google Scholar] [CrossRef]
- Conway, J.B.; Flagella, P.N. Physical and Mechanical Properties of Reactor Materials; GEMP-1012; General Electric Company: Cincinnati, OH, USA, 1969. [Google Scholar]
- Fulkerson, W.; Kollie, T.G.; Weawer, S.C.; Moore, J.P.; Williams, R.K. Plutonium 1970 and other Actinides Part I and II. In Proceedings of the 4th International Conference on Plutonium and Other Actinides (AIME), Santa Fe, NM, USA, 5–9 October 1970. [Google Scholar]
- Affortit, C. Chaleur specifique de UC et UN. J. Nucl. Mater. 1970, 34, 105–107. [Google Scholar] [CrossRef]
- Akhachinskii, V.V.; Bashlykov, S.N. Thermodynamics of the uranium-carbon, uranium-nitrogen, and plutonium-carbon systems. Atom. Enegriya 1970, 29, 1211–1219. [Google Scholar] [CrossRef]
- Benz, R.; Balog, G.; Baca, B.H. U-UO2-UN2 phase diagram. High Temp. Sci. 1994, 2, 405–406. [Google Scholar] [CrossRef]
- Takahashi, Y.; Murabayashi, M.; Akimoto, Y.; Mukaibo, T. Uranium mononitride: Heat capacity and thermal conductivity from 298 to 1000 K. J. Nucl. Mater. 1971, 38, 303–308. [Google Scholar] [CrossRef]
- Cordfunke, E.H.P.; Muis, R.P. The heat capacity of uranium mononitride. J. Nucl. Mater. 1972, 42, 233–234. [Google Scholar] [CrossRef]
- Guinan, M.; Cline, C.F. Elastic properties of uranium mononitride at 298 K. J. Nucl. Mater. 1972, 43, 205–206. [Google Scholar] [CrossRef]
- Oeting, F.L.; Leitnaker, J.M. The chemical thermodynamic properties of nuclear materials I. uranium mononitride. J. Chem. Thermodyn. 1972, 4, 199–211. [Google Scholar] [CrossRef]
- Muromura, T.; Tagawa, H. Lattice parameter of uranium mononitride. J. Nucl. Mater. 1979, 79, 264–266. [Google Scholar] [CrossRef]
- Benedict, U. Study of actinide metals and actinide compounds under high pressures. J. Less Common Met. 1984, 100, 153–170. [Google Scholar] [CrossRef]
- Jackman, J.A.; Holden, T.M.; Buyers, W.J.L.; De Villiers Du Plessis, P.; Vogt, O.; Genossar, J. Systematic study of the lattice dynamics of the uranium rocksalt-structure compounds. Phys. Rev. B 1986, 33, 7144–7153. [Google Scholar] [CrossRef]
- Matsui, T.; Ohse, R.W. Thermodynamic properties of uranium nitride, plutonium, nitride and uranium-plutonium mixed nitride. High Temp. High Press. 1987, 18, 1–17. [Google Scholar]
- Krikorian, O.H. Thermal expansivity correlations for refractory materials with the NaCl-type structure. High Temp. High Press. 1988, 20, 169–175. [Google Scholar]
- Staun Olsen, J.; Gerward, L.; Benedict, U.; Dabos, S.; Itié, J.-P.; Vogt, O. Bulk moduli and high-pressure phases of the uranium rocksalt structure compounds: II. The monopnictides. High Press. Res. 1989, 1, 253–266. [Google Scholar] [CrossRef]
- Hayes, S.L.; Thomas, J.K.; Peddicord, K.L. Material property correlations for uranium mononitride: I. Physical properties. J. Nucl. Mater. 1990, 171, 262–318. [Google Scholar] [CrossRef]
- Benedict, U. Comparative aspects of the high-pressure behaviour of lanthanide and actinide compounds. J. Alloys Compd. 1995, 223, 216–225. [Google Scholar] [CrossRef]
- Wang, W.E.; Olander, D.R. Thermodynamics of gas dissolution in liquid metals with extensive solubility; the U(L)-N, Zr(L)-O, and Th(L)-O systems. J. Alloys Compd. 1995, 228, 31–36. [Google Scholar] [CrossRef]
- Le Bihan, T.; Idiri, M.; Heathman, S. New investigation of pressure-induced rhombohedral distortion of uranium nitride. J. Alloys Compd. 2003, 358, 120–125. [Google Scholar] [CrossRef]
- Muta, H.; Kurosaki, K.; Masayoshi, U. Thermal and mechanical properties of uranium nitride prepared by SPS technique. J. Mater. Sci. 2008, 43, 6429–6434. [Google Scholar] [CrossRef]
- Aczel, A.A.; Granroth, G.E.; MacDougall, G.J.; Buyers, W.J.L.; Abernathy, D.L.; Samolyuk, G.D.; Sticks, G.M.; Nagler, S.E. Quantum oscillations of nitrogen atoms in uranium nitride. Nat. Commun. 2012, 3, 1124. [Google Scholar] [CrossRef] [PubMed]
- King, D.M.; Tuna, F.; McInnes, E.J.L.; McMaster, J.; Lewis, W.; Blake, A.J.; Liddle, S.T. Synthesis and structure of a terminal uranium nitride complex. Science 2012, 337, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Baranov, V.G.; Tenishev, A.V.; Kuzmin, R.S.; Pokrovskiy, S.A.; Mikhachik, V.V.; Astafyev, V.A.; Taubin, M.L.; Solntseva, E.S. Thermal stability investigation technique for uranium nitride. Ann. Nucl. Energy 2016, 87, 784–792. [Google Scholar] [CrossRef]
- Brooks, M.S.S. Electronic structure of NaCl-type compound of the light actinides. III. The actinide nitride series. J. Phys. F Met. Phys. 1984, 14, 857–871. [Google Scholar] [CrossRef]
- Chavalier, P.-Y.; Fisher, E.; Cheynet, B. Thermodynamic modelling of the N-U system. J. Nucl. Mater. 2000, 280, 136–150. [Google Scholar] [CrossRef]
- Kurosaki, K.; Yano, K.; Yamada, K.; Uno, M.; Yamanaka, S. A molecular dynamics study of the heat capacity of uranium mononitride. J. Alloys Compd. 2000, 297, 1–4. [Google Scholar] [CrossRef]
- Freyss, M.; Sato, I. Ab initio study of uranium and plutonium carbides and nitrides. In Recent Advances in Actinide Science; Alvarez, R., Bryan, N.D., May, I., Eds.; RSC Publishing: Cambridge, UK, 2005; pp. 430–432. [Google Scholar]
- Weck, P.F.; Kim, E.; Balakrishnan, N.; Poineau, F.; Yeamans, C.B.; Czerwinski, K.R. First-principles study of single-crystal uranium mono- and dinitride. Chem. Phys. Lett. 2007, 443, 82–86. [Google Scholar] [CrossRef]
- Evarestov, R.A.; Losev, M.V.; Panin, A.I.; Mosyagin, N.S.; Titov, A.V. Electronic structure of crystalline uranium nitride: LCAO DFT calculations. Phys. Stat. Sol. (b) 2008, 245, 114–122. [Google Scholar] [CrossRef]
- Evarestov, R.A.; Panin, A.I.; Bandura, A.V.; Losev, M.V. Electronic structure of crystalline uranium nitrides UN, U2N3 and UN2: LCAO calculations with the basis set optimization. J. Phys. Conf. Ser. 2008, 117, 012015. [Google Scholar] [CrossRef]
- Petit, L.; Svane, A.; Szotek, Z.; Temmerman, W.M.; Stocks, G.M. Ground-state electronic structure of actinide monocarbides and mononitrides. Phys. Rev. B 2009, 80, 045124. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, B.-T.; Li, R.-W.; Shi, H.; Zhang, P. Structural, electronic, and thermodynamic properties of UN: Systematic density functional calculations. J. Nucl. Mater. 2010, 406, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Modak, P.; Verma, A.K. First-principles investigation of electronic, vibrational, elastic, and structural properties of ThN and UN up to 100 GPa. Phys. Rev. B 2011, 84, 024108. [Google Scholar] [CrossRef]
- Baranov, V.G.; Devyatko, Y.N.; Tenishev, A.V.; Khlunov, A.V.; Khomyakov, O.V. A physical model for evaluating uranium nitride specific heat. J. Nucl. Mater. 2013, 443, 248–251. [Google Scholar] [CrossRef]
- Su, Q.; Deng, H.; Ao, B.; Xiao, S.; Li, X.; Chen, P.; Hu, W. First-principles study of the interaction of nitrogen atom with α-uranium: From surface absorption to bulk diffusion. J. Appl. Phys. 2014, 115, 164902. [Google Scholar] [CrossRef]
- Claisse, A.; Klipfel, M.; Lindbom, N.; Freyss, M.; Olsson, P. GGA+U study of uranium mononitride: A comparison of the U-ramping and occupation matrix scheme and incorporation energies of fission products. J. Nucl. Mater. 2016, 478, 119–124. [Google Scholar] [CrossRef]
- Zhou, D.; Yu, J.-H.; Pu, C.; Song, Y. Prediction of stable ground-state uranium nitrides at ambient and high pressures. arXiv 2018, arXiv:1804.00095v1. [Google Scholar]
- Streit, M.; Franz, I. Nitrides as a nuclear fuel option. J. Eur. Ceram. Soc. 2005, 25, 2687–2692. [Google Scholar] [CrossRef]
- Kaufman, L.; Bernstein, H. Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Saunders, N.; Miodownik, A. CALPHAD Calculation of Phase Diagrams: A Comprehensive Guide; Pergamon materials series; Elsevier Science: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Lukas, H.; Fries, S.; Sundman, B. Computational Thermodynamics: The CALPHAD Method; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Souvatzis, P.; Eriksson, O.; Katsnelson, M.I.; Rudin, S.P. Entropy driven stabilization of energetically unstable crystal structures explained from first principles theory. Phys. Rev. Lett. 2008, 100, 095901. [Google Scholar] [CrossRef] [PubMed]
- Söderlind, P.; Grabowski, B.; Yang, L.; Landa, A.; Björkman, T.; Souvatzis, P.; Eriksson, O. High-temperature stabilization of γ-uranium from relativistic first-principles theory. Phys. Rev. B 2012, 85, 060301. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Söderlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M. Electronic properties of f-electron metals using the generalized gradient approximation. Phys. Rev. B 1994, 50, 7291–7294. [Google Scholar] [CrossRef] [PubMed]
- Söderlind, P.; Gonis, A. Assessing a solids-biased density-gradient functional for actinide metals. Phys. Rev. B 2010, 82, 033102. [Google Scholar] [CrossRef]
- Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.; Blum, V.; Caliste, D.; Castelli, I.E.; Clark, S.J.; Dal Corso, A.; et al. Reproducibility in density functional theory calculations for solids. Science 2016, 351, aad3000(1)–aad3000(7). [Google Scholar] [CrossRef]
- Wills, J.M.; Alouani, M.; Andersson, P.; Delin, A.; Eriksson, O.; Grechnyev, O. Full-Potential Electronic Structure Method; Springer Series in Solid-State Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 167. [Google Scholar]
- Nordström, L.; Wills, J.M.; Andersson, P.H.; Söderlind, P.; Eriksson, O. Spin-orbit coupling in the actinide elements: A critical evaluation of theoretical equilibrium volumes. Phys. Rev. B 2000, 63, 035103. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, O.; Brooks, M.S.S.; Johansson, B. Orbital polarization in narrow-band systems: Application to volume collapses in light lanthanides. Phys. Rev. B 1990, 41, 7311–7314. [Google Scholar] [CrossRef]
- Söderlind, P.; Landa, A.; Sadigh, B. Density-functional theory for plutonium. Adv. Phys. 2019, 68, 1–47. [Google Scholar] [CrossRef]
- Vinet, P.; Ferrante, J.; Smith, J.R.; Rose, J.H. Universal equation of state for solids. J. Phys. C Solid State Phys. 1986, 19, L467–L473. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Souvatzis, P.; Eriksson, O.; Katsnelson, M.I.; Rudin, S.P. The self-consistent ab initio lattice dynamical method. Comput. Mat. Sci. 2009, 44, 888–894. [Google Scholar] [CrossRef]
- Bajaj, S.; Landa, A.; Söderlind, P.; Turchi, P.E.A.; Arroyave, R. The U-Ti system: Strengths and weaknesses of the CALPHAD method. J. Nucl. Mater. 2011, 419, 177–185. [Google Scholar] [CrossRef]
- Perron, A.; Turchi, P.E.A.; Landa, A.; Söderlind, P.; Ravat, B.; Oudot, B.; Delaunay, F.; Kurata, M. Thermodynamic re-assessment of the Pu-U system and its application to the ternary Pu-U-Ga system. J. Nucl. Mater. 2014, 454, 81–95. [Google Scholar] [CrossRef]
- Perron, A.; Turchi, P.E.A.; Landa, A.; Söderlind, P.; Ravat, B.; Oudot, B.; Delaunay, F. The Pu-U-Am system: An ab initio informed CALPHAD thermodynamic study. J. Nucl. Mater. 2015, 458, 425–441. [Google Scholar] [CrossRef]
- Besmann, T.H.; Shin, D.; Lindemer, T.B. Uranium nitride as LWR TRISO fuel: Thermodynamic modeling of U-C-N. J. Nucl. Mater. 2012, 427, 162–168. [Google Scholar] [CrossRef]
- Söderlind, P. First-principles elastic and structural properties of uranium metal. Phys. Rev. B 2002, 66, 085113. [Google Scholar] [CrossRef]
- Sedmidubský, D.; Konings, R.J.M.; Novák, P. Calculation of enthalpies of formation of actinide nitrides. J. Nucl. Mater. 2005, 344, 40–44. [Google Scholar] [CrossRef]
- Wyckoff, R.W.G. Crystal Structures; John Wiley & Sons: New York, NY, USA, 1963; Volume I. [Google Scholar]
- Mei, Z.-G.; Stan, M.; Pichler, B. First-principles study of structural, elastic, vibrational, and thermodynamic properties of UN. J. Nucl. Mater. 2013, 440, 63–69. [Google Scholar] [CrossRef]
- Otero-de-la Roza, A.; Luaña, V. Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data. Comput. Phys. Commun. 2011, 182, 1708–1720. [Google Scholar] [CrossRef]
- Otero-de-la Roza, A.; Abbasi-Pérez, D. Gibbs2: A new version of the quasi-harmonic model code. II Models for solid thermodynamics, features and implementation. Comput. Phys. Commun. 2011, 182, 2232–2248. [Google Scholar] [CrossRef]
- Otero-de-la Roza, A.; Luaña, V. Equation of state and thermodynamics of solids using empirical corrections in the quasi-harmonic approximation. Phys. Rev. B 2011, 84, 184103. [Google Scholar] [CrossRef]
- Otero-de-la Roza, A.; Luaña, V. Treatment of first-principles data for predictive quasiharmonic thermodynamics of solids: The case of MgO. Phys. Rev. B 2011, 84, 024109. [Google Scholar] [CrossRef]
- Buyers, W.J.L.; Murray, A.F.; Holden, T.M.; Svensson, E.C.; DuPlessis, P.D.V.; Lander, G.H.; Vogt, O. Spin and phonon excitations in actinide systems. Physica 1980, 102B, 291–298. [Google Scholar] [CrossRef]
Method | V (Å3) | B (GPa) | B’ | ΔE (mRy/at) | ΔE (kJ/mol) | M (μB) | ΔfH (mRy/at) | ΔfH (kJ/mol) |
---|---|---|---|---|---|---|---|---|
DFT-FM | 14.85 | 182 | 5.2 | 0 | 0 | 0.78 (1.56) | −226.6 | −297.5 |
DFT-AF | 14.85 | 183 | 5.0 | 1.5 | 1.97 | 0.78 | n/a | n/a |
DFT-NM | 14.75 | 232 | 2.0 | 2.3 | 3.02 | 0 | n/a | n/a |
Expt | 14.62 | 191–206 | 6.3 | n/a | n/a | 0.75 | −223.6 | −293.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Söderlind, P.; Landa, A.; Perron, A.; Sadigh, B.; Heo, T.W. Ground-State and Thermodynamical Properties of Uranium Mononitride from Anharmonic First-Principles Theory. Appl. Sci. 2019, 9, 3914. https://doi.org/10.3390/app9183914
Söderlind P, Landa A, Perron A, Sadigh B, Heo TW. Ground-State and Thermodynamical Properties of Uranium Mononitride from Anharmonic First-Principles Theory. Applied Sciences. 2019; 9(18):3914. https://doi.org/10.3390/app9183914
Chicago/Turabian StyleSöderlind, Per, Alexander Landa, Aurélien Perron, Babak Sadigh, and Tae Wook Heo. 2019. "Ground-State and Thermodynamical Properties of Uranium Mononitride from Anharmonic First-Principles Theory" Applied Sciences 9, no. 18: 3914. https://doi.org/10.3390/app9183914
APA StyleSöderlind, P., Landa, A., Perron, A., Sadigh, B., & Heo, T. W. (2019). Ground-State and Thermodynamical Properties of Uranium Mononitride from Anharmonic First-Principles Theory. Applied Sciences, 9(18), 3914. https://doi.org/10.3390/app9183914