Identification of Fusarium Head Blight in Winter Wheat Ears Based on Fisher’s Linear Discriminant Analysis and a Support Vector Machine
<p>Location of the study area.</p> "> Figure 2
<p>FHB-infected ear of winter wheat at different stages of severity.</p> "> Figure 3
<p>FHB-infected ear of winter wheat at three measuring angles (front, side, and erect).</p> "> Figure 4
<p>General workflow for identification of wheat Fusarium head blight; FLDA (fisher’s linear discriminant analysis); SVM (support vector machine); LDA–SVM (the combination of FLDA and SVM).</p> "> Figure 5
<p>Correlation coefficient curves of different spectra and severity of disease. (<b>a</b>) The original spectrum. (<b>b</b>) First order derivative spectrum.</p> "> Figure 6
<p>Comparison curve of model accuracy and kappa coefficient.</p> "> Figure 7
<p>The important weights of selected features in the models at side, front, and erect angles.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.1.1. Study Area and Assessment of Disease Severity
2.1.2. Spectral Measurement
2.2. Data Preprocessing
Standardization of Spectral Data
2.3. Analysis Methods
2.3.1. Selection of Candidate Spectral Features
2.3.2. Pre-Processing of the Spectral Feature Sets
- (1).
- The spectral features are significantly correlated with the severity of FHB and the threshold determination coefficient is greater than 0.49 (R2 > 0.49).
- (2).
- For the three classes of samples (healthy, mild, and severe), the independent T-test was used to select spectral features that showed significant heterogeneity to each disease class (p < 0.001).
- (3).
- The spectral feature sets selected by the above two conditions were intersected to obtain an optimal spectral feature set sensitive to FHB and with significant heterogeneity between the three classes of disease severity.
- (4).
- The above steps were repeated from three angles—front, side, and erect—to obtain the optimal spectral feature set suitable for FHB identification.
2.3.3. Model Analysis
3. Results and Discussion
3.1. Evaluation of the Ability of Various Features to Identify Fusarium Head Blight
3.1.1. The Features of First-Order Derivatives
3.1.2. The Features of Continuum Removal
3.1.3. Vegetation Indices
3.2. Selection of Spectral Feature Sets
3.3. Identification of Diseased Samples with Different Degrees of Severity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PRI | Photochemical Reflectance Index |
PHRI | The Physiological Reflectance Index |
MCARI | Modified Chlorophyll Absorption Reflectance Index |
TVI | Triangular Vegetation Index |
ARI | Anthocyanin Reflectance Index |
NDVI | Normalized Difference Vegetation Index |
GNDVI | Green Normalized Difference Vegetation Index |
NBNDVI | Narrow-Band Normalized Difference Vegetation Index |
NRI | Nitrogen Reflectance Index |
PSRI | Plant Senescence Reflectance Index |
SIPI | Structure Insensitive Pigment Index |
NPCI | Normalized Total Pigment to Chlorophyll Ratio Index |
TCARI | The Transformed Chlorophyll Absorption and Reflectance Index |
CARI | Chlorophyll Absorption Ratio Index |
GI | Greenness Index |
MSR | Modified Simple Ratio |
References
- Song, Y.; Linderholm, H.W.; Wang, C.; Tian, J.; Huo, Z.; Gao, P.; Song, Y.; Guo, A. The influence of excess precipitation on winter wheat under climate change in China from 1961 to 2017. Sci. Total Environ. 2019, 690, 189–196. [Google Scholar] [CrossRef]
- Zhang, J.; Yi, Y.; Wang, J.; Chen, S.; Li, G. Research progress of control techniques on wheat scab. China Plant. Prot. 2014, 34, 24–28, 53. [Google Scholar]
- McMullen, M.; Jones, R.; Gallenberg, D. Scab of Wheat and Barley: A Re-emerging Disease of Devastating Impact. Plant. Dis. 1997, 81, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, R.S.; Kistler, H.C. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant. Pathol. 2004, 5, 515–525. [Google Scholar] [CrossRef]
- Ropelewska, E.; Zapotoczny, P. Classification of Fusarium-infected and healthy wheat kernels based on features from hyperspectral images and flatbed scanner images: A comparative analysis. Eur. Food Res. Technol. 2018, 244, 1453–1462. [Google Scholar] [CrossRef]
- Hu, X.; Rocheleau, H.; McCartney, C.; Biselli, C.; Bagnaresi, P.; Balcerzak, M.; Fedak, G.; Yan, Z.; Valè, G.; Khanizadeh, S.; et al. Identification and mapping of expressed genes associated with the 2DL QTL for fusarium head blight resistance in the wheat line Wuhan 1. BMC Genet. 2019, 20, 47. [Google Scholar] [CrossRef]
- Karlsson, I.; Friberg, H.; Kolseth, A.K.; Steinberg, C.; Persson, P. Agricultural factors affecting Fusarium communities in wheat kernels. Int. J. Food Microbiol. 2017, 252, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Steiner, B.; Buerstmayr, M.; Michel, S.; Schweiger, W.; Lemmens, M.; Buerstmayr, H. Breeding strategies and advances in line selection for Fusarium head blight resistance in wheat. Trop. Plant. Pathol. 2017, 42, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Sip, V.; Chrpova, J.; Sterbova, L.; Palicová, J. Combining ability analysis of fusarium head blight resistance in European winter wheat varieties. Cereal Res. Commun. 2017, 45, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hideki, N. The infection process of wheat scab pathogen. J. Nanjing Agric. Univ. 1989, 12, 33–38. [Google Scholar]
- Hernandez Nopsa, J.F.; Daglish, G.J.; Hagstrum, D.W.; Leslie, J.F.; Phillips, T.W.; Scoglio, C.; Thomas-Sharma, S.; Walter, G.H.; Garrett, K.A. Ecological networks in stored grain: Key postharvest nodes for emerging pests, pathogens, and mycotoxins. Bioscience 2015, 65, 985–1002. [Google Scholar] [CrossRef]
- Liang, K.; Du, Y.Y.; Lu, W.; Wang, G.; Xu, J.H.; Shen, M.X. Identification of Fusarium Head Blight Wheat Based on Hyperspectral Imaging Technology. Trans. Chin. Soc. Agric. Mach. 2016, 47, 309–315. [Google Scholar] [CrossRef]
- Delwiche, S.R.; Rodriguez, I.T.; Rausch, S.R.; Graybosch, R.A. Estimating percentages of fusarium-damaged kernels in hard wheat by near-infrared hyperspectral imaging. J. Cereal Sci. 2019, 87, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Whetton, R.L.; Waine, T.W.; Mouazen, A.M. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 2: On-line field measurement. Biosyst. Eng. 2018, 167, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Bauriegel, E.; Giebel, A.; Geyer, M.; Schmidt, U.; Herppich, W.B. Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput. Electron. Agric. 2011, 75, 304–312. [Google Scholar] [CrossRef]
- Jin, X.; Jie, L.; Wang, S.; Qi, H.; Li, S. Classifying Wheat Hyperspectral Pixels of Healthy Heads and Fusarium Head Blight Disease Using a Deep Neural Network in the Wild Field. Remote Sens. 2018, 10, 395. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, J.; Luo, J.; Zhao, J.; Huang, L.; Zhou, X. Remote Sensing Monitoring and Forecasting of Crop. Diseases and Insect Pests, 1st ed.; Beijing Science Press: Beijing, China, 2015. [Google Scholar]
- Zhang, X. Pattern Recognition, 3rd ed.; Tsinghua University Press: Beijing, China, 2010. [Google Scholar]
- Huang, L.; Liu, W.; Huang, W.; Zhao, J.; Song, F. Remote sensing monitoring of winter wheat powdery mildew based on wavelet analysis and support vector. Trans. Chin. Soc. Agric. Eng. 2017, 33, 188–195. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, C.; Xu, J.; Huang, L.; Zhang, D.; Liang, D. Forecasting the wheat powdery mildew (Blumeria graminis f. Sp. tritici) using a remote sensing-based decision-tree classification at a provincial scale. Australas. Plant. Pathol. 2018, 47, 53–61. [Google Scholar] [CrossRef]
- Zhang, J.; Pu, R.; Huang, W.; Yuan, L.; Luo, J.; Wang, J. Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crop. Res. 2012, 134, 165–174. [Google Scholar] [CrossRef]
- Yuan, L.; Bao, Z.; Tian, J.; Xing, C.; Zhang, H. Spectral Differentiation among Different Diseases and Pests in Winter Wheat Using Continuous Wavelet Analysis. Geogr. Geo-Inf. Sci. 2017, 33, 28–34. [Google Scholar] [CrossRef]
- Jia, W.Y.; Zhi, Q.C.; Jin, S.Z.; He, S.W.; Yue, L.J.; Shu, Y.Y. An Approach to Distinguishing Between Species of Trees and Crops Based on Hyperspectral Information. Spectrosc. Spectr. Anal. 2018, 38, 3890–3896. [Google Scholar] [CrossRef]
- Jing, X.; Wang, J.; Song, X.; Xu, X.; Chen, B.; Huang, W. Continuum removal method for cotton verticillium wilt severity monitoring with hyperspectral data. Trans. CSAE 2010, 26, 193–198. [Google Scholar] [CrossRef]
- Li, F.L.; Chang, Q.R. Estimation of Winter Wheat Leaf Nitrogen Content Based on Continuum Removed Spectra. Trans. Chin. Soc. Agric. Mach. 2017, 48, 174–179. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The Photochemical Reflectance Index: An optical indicator of photosynthetic radiation use efficiency across species, functional types and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey Iii, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Broge, N.H.; Mortensen, J.V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens. Environ. 2002, 81, 45–57. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. J. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Rouse, J., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third ERTS Symposium, College Station, TX, USA, 10–14 December 1973; Volume 1, pp. 309–317. [Google Scholar]
- Thenkabail, P.S.; Smith, R.B.; Pauw, E.D. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Filella, I.; Serrano, L.; Serra, J.; Penuelas, J. Evaluating wheat nitrogen status with canopyreflectance indices and discriminant analysis. Crop. Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Peñuelas, J.; Inoue, Y. Reflectance indices indicative of changes in water and pigment contents of peanut and wheat leaves. Photosynthetica 1999, 36, 355–360. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in intro-gen and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 136–146. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for predicting of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Kim, M.S.; Daughtry, C.S.T.; Chappelle, E.W.; McMurtrey, J.E.; Walthall, C.L. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (APAR). In Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, Greenbelt, MD, USA, 1 January 1994; pp. 299–306. [Google Scholar]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Feng, G. Parameter optimizing for Support Vector Machines classification. Comput. Eng. Appl. 2011, 47, 123–124. [Google Scholar] [CrossRef]
- Zhou, Q.C.; Liu, J.; Liu, L.; Huang, D.; Deng, L.; Jiang, Q. Research on fault fiagnosis penalty coefficient and kernel function coefficient optimization of ventilation system based on SVM. J. Saf. Sci. Technol. 2019, 15, 45–51. [Google Scholar] [CrossRef]
- Huang, L.L.; Tang, J.; Sun, D.D.; Luo, B. Feature selection algorithm based on multi-label ReliefF. J. Comput. Appl. 2018, 10, 2888–2890, 2898. [Google Scholar] [CrossRef]
Level | Description of Occurrence Condition |
---|---|
0 | The ratio of diseased kernels = 0 |
1 | The ratio of diseased kernels < 1/4 |
2 | 1/4 ≤ the ratio of diseased kernels < 1/2 |
3 | 1/2 ≤ the ratio of diseased kernels < 3/4 |
Category | Features | Definition and Description |
---|---|---|
Spectral position feature | Db | Blue edge (490–530 nm) maximum first-order derivative value |
Dy | Yellow edge (550–582 nm) maximum first-order derivative value | |
Dr | Red edge (680–780 nm) maximum first-order derivative value | |
λb | The wavelength of Db | |
λy | The wavelength of Dy | |
λr | The wavelength of Dr | |
Spectral area feature | SDb | First-order derivative sum in the blue-edge wavelength range |
SDy | First-order derivative sum in the yellow-edge wavelength range | |
SDr | First-order derivative sum in the red-edge wavelength range | |
SDg | First-order derivative sum of green peaks (510–530 nm) | |
Spectral index feature | SDr/SDb | The ratio of SDr to SDb |
SDr/SDy | The ratio of SDr to SDy | |
SDr/SDg | The ratio of SDr to SDg | |
SDy/SDb | The ratio of SDy to SDb | |
SDg/SDb | The ratio of SDg to SDb | |
(SDr − SDb)/(SDr + SDb) | Normalized value of SDr and SDb | |
(SDr − SDy)/(SDr + SDy) | Normalized value of SDr and SDy | |
(SDr − SDg)/(SDr + SDg) | Normalized value of SDr and SDg | |
(SDy − SDb)/(SDy + SDb) | Normalized value of SDy and SDb | |
(SDg − SDb)/(SDg + SDb) | Normalized value of SDg and SDb |
Features | Definition and Description |
---|---|
W1 | Band width to the left of the absorption feature |
W2 | Band width to the right of the absorption feature |
A | Absorption area of the absorption feature |
λ | The band position of the absorbing feature |
H | Absorption peak depth relative to the envelope in the 550–750 nm band |
Vegetation Index | Calculation Formula | Reference |
---|---|---|
PRI | (R531 − R570)/(R531 + R570) | [27] |
PHRI | (R550 − R531)/(R531 + R570) | [27] |
MCARI | [(R700 − R670) − 0.2(R700 − R550)](R700/R670) | [28] |
TVI | 0.5[120(R750 − R550)-200(R670-R550)] | [29] |
ARI | (R550)−1 − (R700) −1 | [30] |
NDVI | (R800 − R670)/(R800 + R670) | [31] |
GNDVI | (R747 − R537)/(R747 + R537) | [32] |
NBNDVI | (R850 − R680)/(R850 + R680) | [33] |
NRI | (R570 − R670)/(R570 + R670) | [33] |
PSRI | (R680 − R500)/R750 | [34] |
SIPI | (R800 − R450)/(R800 + R680) | [35] |
NPCI | (R680 − R430)/(R680 + R430) | [36] |
TCARI | 3[(R700 − R670) − 0.2(R700 − R550)(R700/R670)] | [37] |
CARI | (|(a670 + R670 + b)|/(a2 +1)1/2)(R700/R670) a = (R700 − R550)/150, b = R550 − (a × 550) | [38] |
GI | R554/R677 | [39] |
MSR | (R800/R670 − 1)/sqrt(R800/R670 + 1) | [40] |
Features | Front | Side | Erect | ||||||
---|---|---|---|---|---|---|---|---|---|
R | R2 | p-Value | R | R2 | p-Value | R | R2 | p-Value | |
Db | −0.626 | 0.391 | 0.000 | −0.437 | 0.191 | 0.000 | −0.205 | 0.042 | 0.053 |
Dy | 0.504 | 0.254 | 0.000 | 0.641 | 0.411 | 0.000 | 0.550 | 0.302 | 0.000 |
Dr | −0.569 | 0.324 | 0.000 | −0.512 | 0.262 | 0.000 | −0.377 | 0.142 | 0.000 |
λb | −0.184 | 0.034 | 0.084 | 0.132 | 0.017 | 0.217 | −0.595 | 0.354 | 0.000 |
λy | 0.310 | 0.096 | 0.003 | 0.188 | 0.035 | 0.078 | 0.337 | 0.114 | 0.001 |
λr | −0.173 | 0.030 | 0.105 | −0.448 | 0.201 | 0.000 | −0.212 | 0.045 | 0.046 |
SDb | −0.567 | 0.322 | 0.000 | −0.334 | 0.112 | 0.001 | −0.057 | 0.003 | 0.596 |
SDy | 0.816 | 0.666 | 0.000 | 0.778 | 0.605 | 0.000 | 0.787 | 0.620 | 0.000 |
SDr | −0.553 | 0.306 | 0.000 | −0.494 | 0.244 | 0.000 | −0.331 | 0.110 | 0.002 |
SDg | −0.615 | 0.378 | 0.000 | −0.418 | 0.175 | 0.000 | −0.196 | 0.038 | 0.492 |
SDr/SDb | 0.315 | 0.099 | 0.003 | 0.096 | 0.009 | 0.372 | 0.134 | 0.018 | 0.212 |
SDr/SDy | 0.087 | 0.008 | 0.416 | 0.258 | 0.067 | 0.015 | 0.237 | 0.056 | 0.025 |
SDr/SDg | 0.425 | 0.181 | 0.000 | 0.230 | 0.053 | 0.030 | 0.195 | 0.038 | 0.253 |
SDy/SDb | 0.800 | 0.640 | 0.000 | 0.770 | 0.593 | 0.000 | 0.583 | 0.340 | 0.000 |
SDg/SDb | −0.794 | 0.630 | 0.000 | −0.835 | 0.697 | 0.000 | −0.765 | 0.585 | 0.000 |
(SDr-SDb)/(SDr+SDb) | 0.349 | 0.122 | 0.001 | 0.087 | 0.008 | 0.419 | −0.023 | 0.001 | 0.829 |
(SDr-SDy)/(SDr+SDy) | −0.816 | 0.665 | 0.000 | −0.781 | 0.610 | 0.000 | −0.787 | 0.619 | 0.000 |
(SDr-SDg)/(SDr+SDg) | 0.475 | 0.226 | 0.000 | 0.229 | 0.053 | 0.031 | 0.128 | 0.016 | 0.176 |
(SDy-SDb)/(SDy+SDb) | 0.782 | 0.612 | 0.000 | 0.742 | 0.551 | 0.000 | 0.135 | 0.018 | 0.206 |
(SDg-SDb)/(SDg+SDb) | −0.793 | 0.629 | 0.000 | −0.833 | 0.693 | 0.000 | −0.757 | 0.573 | 0.000 |
Features | Front | Side | Erect | ||||||
---|---|---|---|---|---|---|---|---|---|
R | R2 | p-Value | R | R2 | p-Value | R | R2 | p-Value | |
λ | −0.234 | 0.055 | 0.027 | −0.01 | 0.000 | 0.926 | 0.352 | 0.124 | 0.001 |
Band depth | −0.761 | 0.579 | 0.000 | −0.802 | 0.644 | 0.000 | −0.699 | 0.489 | 0.000 |
W1 | −0.234 | 0.055 | 0.027 | −0.010 | 0.000 | 0.926 | 0.352 | 0.124 | 0.001 |
W2 | 0.234 | 0.055 | 0.027 | 0.010 | 0.000 | 0.926 | −0.352 | 0.124 | 0.001 |
Area | −0.710 | 0.504 | 0.000 | −0.772 | 0.595 | 0.000 | −0.665 | 0.443 | 0.000 |
Vegetation Index | Front | Side | Erect | ||||||
---|---|---|---|---|---|---|---|---|---|
R | R2 | p-Value | R | R2 | p-Value | R | R2 | p-Value | |
PRI | −0.640 | 0.410 | 0.000 | −0.659 | 0.434 | 0.000 | −0.526 | 0.277 | 0.000 |
PHRI | −0.382 | 0.146 | 0.000 | −0.194 | 0.038 | 0.069 | −0.007 | 0.000 | 0.949 |
MCARI | −0.646 | 0.418 | 0.000 | −0.632 | 0.400 | 0.000 | −0.628 | 0.395 | 0.000 |
TVI | −0.623 | 0.388 | 0.000 | −0.565 | 0.319 | 0.000 | −0.410 | 0.168 | 0.000 |
ARI | 0.142 | 0.020 | 0.183 | −0.157 | 0.025 | 0.141 | −0.347 | 0.121 | 0.001 |
NDVI | −0.739 | 0.546 | 0.000 | −0.800 | 0.640 | 0.000 | −0.714 | 0.510 | 0.000 |
GNDVI | −0.375 | 0.141 | 0.000 | −0.537 | 0.288 | 0.000 | −0.530 | 0.281 | 0.000 |
NBNDVI | −0.758 | 0.574 | 0.000 | −0.811 | 0.657 | 0.000 | −0.723 | 0.522 | 0.000 |
NRI | −0.796 | 0.633 | 0.000 | −0.732 | 0.536 | 0.000 | −0.319 | 0.102 | 0.002 |
PSRI | 0.796 | 0.634 | 0.000 | 0.769 | 0.592 | 0.000 | 0.736 | 0.541 | 0.000 |
SIPI | −0.722 | 0.522 | 0.000 | −0.794 | 0.631 | 0.000 | −0.703 | 0.494 | 0.000 |
NPCI | 0.711 | 0.505 | 0.000 | 0.712 | 0.508 | 0.000 | 0.640 | 0.410 | 0.000 |
RVSI | 0.657 | 0.432 | 0.000 | 0.614 | 0.377 | 0.000 | 0.478 | 0.229 | 0.033 |
TCARI | −0.511 | 0.262 | 0.000 | −0.224 | 0.050 | 0.000 | 0.227 | 0.051 | 0.138 |
CARI | −0.125 | 0.016 | 0.243 | 0.017 | 0.000 | 0.873 | −0.158 | 0.025 | 0.021 |
GI | −0.775 | 0.601 | 0.000 | −0.694 | 0.482 | 0.000 | −0.243 | 0.059 | 0.000 |
MSR | −0.718 | 0.515 | 0.000 | −0.786 | 0.617 | 0.000 | −0.706 | 0.498 | 0.000 |
Category | Variables | Front | Side | Erect | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Order | H&M | M&S | H&S | Order | H&M | M&S | H&S | Order | H&M | M&S | H&S | ||
First order derivative | SDy | 1 | ✔ | ✔ | ✔ | 9 | ✔ | ✔ | ✔ | 1 | ✔ | ✔ | ✔ |
SDy/SDb | 3 | ✔ | ✔ | ✔ | 11 | ✔ | ✔ | ✔ | |||||
SDg/SDb | 6 | ✔ | ✔ | ✔ | 1 | ✔ | ✔ | ✔ | 3 | ✔ | ✔ | ✔ | |
(SDr − SDy)/(SDr + SDy) | 2 | ✔ | ✔ | ✔ | 8 | ✔ | ✔ | ✔ | 2 | ✔ | ✔ | ✔ | |
(SDy − SDb)/(SDy+SDb) | 8 | ✔ | ✔ | ✔ | 13 | ✔ | ✔ | ✔ | |||||
(SDg − SDb)/(SDg + SDb) | 7 | ✔ | ✔ | ✔ | 2 | ✔ | ✔ | ✔ | 4 | ✔ | ✔ | ✔ | |
Continuous removal | H | 10 | ✔ | ✔ | ✔ | 4 | ✔ | ✔ | ✔ | ||||
A | 16 | ✔ | ✔ | ✔ | 10 | ✔ | ✔ | ✔ | |||||
vegetation indices | NDVI | 12 | ✔ | ✔ | ✔ | 5 | ✔ | ✔ | ✔ | 7 | ✔ | ✔ | ✔ |
NBNDVI | 11 | ✔ | ✔ | ✔ | 3 | ✔ | ✔ | ✔ | 6 | ✔ | ✔ | ✔ | |
NRI | 5 | ✔ | ✔ | ✔ | 14 | ✔ | ✔ | ✔ | |||||
PSRI | 4 | ✔ | ✔ | ✔ | 12 | ✔ | ✔ | ✔ | 5 | ✔ | ✔ | ✔ | |
SIPI | 13 | ✔ | ✔ | ✔ | 6 | ✔ | ✔ | ✔ | 9 | ✔ | ✔ | ✔ | |
NPCI | 15 | ✔ | ✔ | ✔ | 15 | ✔ | ✔ | ✔ | |||||
GI | 9 | ✔ | ✔ | ✔ | |||||||||
MSR | 14 | ✔ | ✔ | ✔ | 7 | ✔ | ✔ | ✔ | 8 | ✔ | ✔ | ✔ |
Models | Front | Side | Erect | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Healthy | Mild | Severe | Sum | U (%) | OA (%) | Kappa | Healthy | Mild | Severe | Sum | U (%) | OA (%) | Kappa | Healthy | Mild | Severe | Sum | U (%) | OA (%) | Kappa | ||
FLDA | Healthy | 12 | 1 | 13 | 70.6 | 77.1 | 0.639 | 8 | 2 | 1 | 11 | 100 | 85.7 | 0.762 | 8 | 3 | 11 | 50.0 | 62.9 | 0.416 | ||
Mild | 5 | 10 | 1 | 16 | 83.3 | 17 | 1 | 18 | 85.0 | 8 | 9 | 1 | 18 | 69.2 | ||||||||
Severe | 1 | 5 | 6 | 83.3 | 1 | 5 | 6 | 71.4 | 1 | 5 | 6 | 83.3 | ||||||||||
Sum | 17 | 12 | 6 | 35 | 8 | 20 | 7 | 35 | 16 | 13 | 6 | 35 | ||||||||||
P (%) | 92.3 | 62.5 | 83.3 | 72.7 | 94.4 | 83.3 | 72.7 | 50.0 | 83.3 | |||||||||||||
SVM | Healthy | 12 | 1 | 13 | 75.0 | 80.0 | 0.683 | 9 | 2 | 11 | 90.0 | 82.9 | 0.728 | 8 | 3 | 11 | 57.1 | 65.7 | 0.424 | |||
Mild | 4 | 11 | 1 | 16 | 84.6 | 1 | 14 | 3 | 18 | 87.5 | 6 | 12 | 18 | 66.7 | ||||||||
Severe | 1 | 5 | 6 | 83.3 | 6 | 6 | 66.7 | 3 | 3 | 6 | 100 | |||||||||||
Sum | 16 | 13 | 6 | 35 | 10 | 16 | 9 | 35 | 14 | 18 | 3 | 35 | ||||||||||
P (%) | 92.3 | 68.8 | 83.3 | 81.8 | 77.8 | 100 | 72.7 | 66.7 | 50.0 | |||||||||||||
LDA–SVM | Healthy | 12 | 1 | 13 | 80.0 | 85.7 | 0.770 | 9 | 2 | 11 | 100 | 88.6 | 0.808 | 9 | 2 | 11 | 56.3 | 68.6 | 0.506 | |||
Mild | 3 | 13 | 16 | 86.7 | 17 | 1 | 18 | 85.0 | 7 | 10 | 1 | 18 | 76.9 | |||||||||
Severe | 1 | 5 | 6 | 100 | 1 | 5 | 6 | 83.3 | 1 | 5 | 6 | 83.3 | ||||||||||
Sum | 15 | 15 | 5 | 35 | 9 | 20 | 6 | 35 | 16 | 13 | 6 | 35 | ||||||||||
P (%) | 92.3 | 81.3 | 83.3 | 81.8 | 94.4 | 83.3 | 81.8 | 55.6 | 83.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Wu, Z.; Huang, W.; Ma, H.; Zhao, J. Identification of Fusarium Head Blight in Winter Wheat Ears Based on Fisher’s Linear Discriminant Analysis and a Support Vector Machine. Appl. Sci. 2019, 9, 3894. https://doi.org/10.3390/app9183894
Huang L, Wu Z, Huang W, Ma H, Zhao J. Identification of Fusarium Head Blight in Winter Wheat Ears Based on Fisher’s Linear Discriminant Analysis and a Support Vector Machine. Applied Sciences. 2019; 9(18):3894. https://doi.org/10.3390/app9183894
Chicago/Turabian StyleHuang, Linsheng, Zhaochuan Wu, Wenjiang Huang, Huiqin Ma, and Jinling Zhao. 2019. "Identification of Fusarium Head Blight in Winter Wheat Ears Based on Fisher’s Linear Discriminant Analysis and a Support Vector Machine" Applied Sciences 9, no. 18: 3894. https://doi.org/10.3390/app9183894
APA StyleHuang, L., Wu, Z., Huang, W., Ma, H., & Zhao, J. (2019). Identification of Fusarium Head Blight in Winter Wheat Ears Based on Fisher’s Linear Discriminant Analysis and a Support Vector Machine. Applied Sciences, 9(18), 3894. https://doi.org/10.3390/app9183894