Assessment of Regional Brain Volume Measurements with Different Brain Extraction and Bias Field Correction Methods in Neonatal MRI
<p>Intensity inhomogeneity on TEA brain T2w MRI preterm neonate: (<b>a</b>) skull-stripped MRI without correction; (<b>b</b>) bias field map; bias-corrected MRI with (<b>c</b>) N4ITK and (<b>d</b>) SPM-BFC methods (images displayed with the Jet color map to ease the comparison between corrections).</p> "> Figure 2
<p>TEA brain T2w MRI (manually skull-stripped) of a preterm neonate in three different axial slices bias-corrected with SPM-BFC (<b>a</b>–<b>c</b>) and N4ITK (<b>d</b>–<b>f</b>), with overlaid brain tissues/structures segmented using MANTiS (color coded: CGM, red; WM, green; CSF, blue; DNGM, yellow; Hip, light blue; Amy, pink; CB, grey; BS, dark blue).</p> "> Figure 3
<p>Coefficient of joint variation (CJV) between white and grey matter intensities from MRI uncorrected and bias field-corrected with SPM-BFC and N4ITK, for each brain extraction method (Manual, BET2, SWS, HD-BET, and SynthStrip).</p> "> Figure 4
<p>Dice coefficient (DC) based on the regional brain tissue segmentation maps obtained from MRI uncorrected and bias field-corrected using SPM-BFC or N4ITK, for each brain extraction method (Manual, BET2, SWS, HD-BET, and SynthStrip).</p> "> Figure 5
<p>TEA brain T2w MRI (example bias-corrected with N4ITK) of a preterm neonate in three different axial slices (<b>a</b>) and corresponding skull-stripped images from each BE method ((<b>b</b>) Manual, (<b>c</b>) BET2, (<b>d</b>) SWS, (<b>e</b>) HD-BET, and (<b>f</b>) SynthStrip), overlaid with segmentation from MANTiS (color coded: CGM, red; WM, green; CSF, blue; DNGM, yellow; Hip, light blue; Amy, pink; CB, grey; BS, dark blue).</p> "> Figure A1
<p>Recovered bias field map overlapped with brain MRI in three different axial slices, with N4ITK bias field correction (BFC) applied before and after manual brain extraction (BE) (bias field map displayed in HSV color map to ease the comparison between corrections).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. MRI Protocol
2.3. Preprocessing Steps
2.3.1. Brain Extraction Methods
2.3.2. Bias Field Correction Methods
2.4. Regional Brain Volume Measurements
2.5. Software
2.6. Evaluation Strategies and Statistical Analysis
2.6.1. Evaluation Strategies
2.6.2. Statistical Analysis
3. Results
3.1. Assessment of Intensity Variability and Segmentation Performance
3.2. Assessment of Regional Brain Volume Measurements After Different Preprocessing Steps
3.2.1. Comparison Between Bias Field Correction Methods
3.2.2. Comparison Amongst Brain Extraction Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Dice Coefficient | Difference | Wilcoxon Test | ||||||
---|---|---|---|---|---|---|---|---|
Brain Extraction Method | Mean | Standard Deviation | Mean | 95% Confidence Interval | Z | p | ||
Before BFC | After BFC | Before BFC | After BFC | |||||
BET2 | 0.938 | 0.934 | 0.004 | 0.004 | 0.004 | [0.002; 0.007] | −1.604 | 0.109 |
SWS | 0.968 | 0.968 | 0.001 | 0.003 | 0.001 | [−0.001; 0.002] | −1.000 | 0.317 |
HD-BET | 0.968 | 0.966 | 0.002 | 0.007 | 0.002 | [−0.004; 0.007] | −1.342 | 0.180 |
SynthStrip | 0.953 | 0.953 | −0.001 | 0.007 | −0.001 | [−0.002; 0.001] | −1.000 | 0.317 |
References
- Ohuma, E.O.; Moller, A.-B.; Bradley, E.; Chakwera, S.; Hussain-Alkhateeb, L.; Lewin, A.; Okwaraji, Y.B.; Mahanani, W.R.; Johansson, E.W.; Lavin, T.; et al. National, Regional, and Global Estimates of Preterm Birth in 2020, with Trends from 2010: A Systematic Analysis. Lancet 2023, 402, 1261–1271. [Google Scholar] [CrossRef] [PubMed]
- Barkovich, M.J.; Barkovich, J. Normal Development of the Fetal, Neonatal, and Infant Brain, Skull, and Spine. In Pediatric Neuroimaging; Wolters Kluwer Health: Philadelphia, PA, USA, 2019; pp. 47–119. ISBN 978-1-4963-3722-1. [Google Scholar]
- Schwartz, E.S.; Barkovich, A.J. Brain and Spine Injuries in Infancy and Childhood. In Pediatric Neuroimaging; Wolters Kluwer Health: Philadelphia, PA, USA, 2019; pp. 371–533. ISBN 978-1-4963-3722-1. [Google Scholar]
- Weindling, M. Clinical Aspects of Brain Injury in the Preterm Infant. In The Newborn Brain; Lagercrantz, H., Hanson, M.A., Ment, L.R., Peebles, D.M., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 301–320. ISBN 978-0-511-71184-8. [Google Scholar]
- Woodward, L.J.; Anderson, P.J.; Austin, N.C.; Howard, K.; Inder, T.E. Neonatal MRI to Predict Neurodevelopmental Outcomes in Preterm Infants. N. Engl. J. Med. 2006, 355, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, M.A. Imaging the Neonatal Brain. In The Newborn Brain; Lagercrantz, H., Hanson, M.A., Ment, L.R., Peebles, D.M., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 199–210. ISBN 978-0-511-71184-8. [Google Scholar]
- Gui, L.; Loukas, S.; Lazeyras, F.; Hüppi, P.S.; Meskaldji, D.E.; Borradori Tolsa, C. Longitudinal Study of Neonatal Brain Tissue Volumes in Preterm Infants and Their Ability to Predict Neurodevelopmental Outcome. NeuroImage 2019, 185, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, R.; Arulkumaran, S.; Carney, O.; Chew, A.; Falconer, S.; Ciarrusta, J.; Wolfers, T.; Batalle, D.; Cordero-Grande, L.; Price, A.N.; et al. Phenotyping the Preterm Brain: Characterizing Individual Deviations From Normative Volumetric Development in Two Large Infant Cohorts. Cereb. Cortex 2021, 31, 3665–3677. [Google Scholar] [CrossRef]
- Romberg, J.; Wilke, M.; Allgaier, C.; Nägele, T.; Engel, C.; Poets, C.F.; Franz, A. MRI-Based Brain Volumes of Preterm Infants at Term: A Systematic Review and Meta-Analysis. Arch. Dis. Child.-Fetal Neonatal Ed. 2022, 107, 520–526. [Google Scholar] [CrossRef]
- Vaz, T.F.; Canto Moreira, N.; Hellström-Westas, L.; Naseh, N.; Matela, N.; Ferreira, H.A. Brain Extraction Methods in Neonatal Brain MRI and Their Effects on Intracranial Volumes. Appl. Sci. 2024, 14, 1339. [Google Scholar] [CrossRef]
- Volpe, J.J. Specialized Studies in the Neurological Evaluation. In Neurology of the Newborn; Saunders: Philadelphia, PA, USA, 2008; pp. 154–191. ISBN 978-1-4160-3995-2. [Google Scholar]
- Keunen, K.; Išgum, I.; van Kooij, B.J.M.; Anbeek, P.; van Haastert, I.C.; Koopman-Esseboom, C.; Fieret-van Stam, P.C.; Nievelstein, R.A.J.; Viergever, M.A.; de Vries, L.S.; et al. Brain Volumes at Term-Equivalent Age in Preterm Infants: Imaging Biomarkers for Neurodevelopmental Outcome through Early School Age. J. Pediatr. 2016, 172, 88–95. [Google Scholar] [CrossRef]
- GilchristKelly, C.P.; Thompson, D.K.; Alexander, B.; Kelly, C.E.; Treyvaud, K.; Matthews, L.G.; Pascoe, L.; Zannino, D.; Yates, R.; Adamson, C.; et al. Growth of Prefrontal and Limbic Brain Regions and Anxiety Disorders in Children Born Very Preterm. Psychol. Med. 2023, 53, 759–770. [Google Scholar] [CrossRef]
- Collins, S.E.; Thompson, D.K.; Kelly, C.E.; Gilchrist, C.P.; Matthews, L.G.; Pascoe, L.; Lee, K.J.; Inder, T.E.; Doyle, L.W.; Cheong, J.L.Y.; et al. Development of Regional Brain Gray Matter Volume across the First 13 Years of Life Is Associated with Childhood Math Computation Ability for Children Born Very Preterm and Full Term. Brain Cogn. 2022, 160, 105875. [Google Scholar] [CrossRef]
- Strahle, J.M.; Triplett, R.L.; Alexopoulos, D.; Smyser, T.A.; Rogers, C.E.; Limbrick, D.D.; Smyser, C.D. Impaired Hippocampal Development and Outcomes in Very Preterm Infants with Perinatal Brain Injury. NeuroImage Clin. 2019, 22, 101787. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Yap, P.-T.; Wang, F.; Wu, Z.; Meng, Y.; Dong, P.; Kim, J.; Shi, F.; Rekik, I.; et al. Computational Neuroanatomy of Baby Brains: A Review. NeuroImage 2019, 185, 906–925. [Google Scholar] [CrossRef] [PubMed]
- Devi, C.N.; Chandrasekharan, A.; Sundararaman, V.K.; Alex, Z.C. Neonatal Brain MRI Segmentation: A Review. Comput. Biol. Med. 2015, 64, 163–178. [Google Scholar] [CrossRef]
- Kalavathi, P.; Prasath, V.B.S. Methods on Skull Stripping of MRI Head Scan Images—A Review. J. Digit. Imaging 2016, 29, 365–379. [Google Scholar] [CrossRef]
- Fatima, A.; Shahid, A.R.; Raza, B.; Madni, T.M.; Janjua, U.I. State-of-the-Art Traditional to the Machine- and Deep-Learning-Based Skull Stripping Techniques, Models, and Algorithms. J. Digit. Imaging 2020, 33, 1443–1464. [Google Scholar] [CrossRef]
- Makropoulos, A.; Counsell, S.J.; Rueckert, D. A Review on Automatic Fetal and Neonatal Brain MRI Segmentation. NeuroImage 2018, 170, 231–248. [Google Scholar] [CrossRef] [PubMed]
- Vovk, U.; Pernus, F.; Likar, B. A Review of Methods for Correction of Intensity Inhomogeneity in MRI. IEEE Trans. Med. Imaging 2007, 26, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Condon, B.R.; Patterson, J.; Wyper, D.; Jenkins, A.; Hadley, D.M. Image Non-Uniformity in Magnetic Resonance Imaging: Its Magnitude and Methods for Its Correction. Br. J. Radiol. 1987, 60, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Simmons, A.; Tofts, P.S.; Barker, G.J.; Arridge, S.R. Sources of Intensity Nonuniformity in Spin Echo Images at 1.5 T. Magn. Reson. Med. 1994, 32, 121–128. [Google Scholar] [CrossRef]
- Lai, S.-H.; Fang, M. A Dual Image Approach for Bias Field Correction in Magnetic Resonance Imaging. Magn. Reson. Imaging 2003, 21, 121–125. [Google Scholar] [CrossRef]
- Mihara, H.; Iriguchi, N.; Ueno, S. A Method of RF Inhomogeneity Correction in MR Imaging. Magn. Reson. Mater. Phys. Biol. Med. 1998, 7, 115–120. [Google Scholar] [CrossRef]
- Brinkmann, B.H.; Manduca, A.; Robb, R.A. Optimized Homomorphic Unsharp Masking for MR Grayscale Inhomogeneity Correction. IEEE Trans. Med. Imaging 1998, 17, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.Q.; Zhu, Y.M.; Bergot, C.; Laval-Jeantet, A.-M.; Bousson, V.; Laredo, J.-D.; Laval-Jeantet, M. A Method of Radio-Frequency Inhomogeneity Correction for Brain Tissue Segmentation in MRI. Comput. Med. Imaging Graph. 2001, 25, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Vemuri, P.; Kholmovski, E.G.; Parker, D.L.; Chapman, B.E. Coil Sensitivity Estimation for Optimal SNR Reconstruction and Intensity Inhomogeneity Correction in Phased Array MR Imaging. Inf. Process Med. Imaging 2005, 19, 603–614. [Google Scholar] [CrossRef]
- Pham, D.L.; Prince, J.L. Adaptive Fuzzy Segmentation of Magnetic Resonance Images. IEEE Trans. Med. Imaging 1999, 18, 737–752. [Google Scholar] [CrossRef]
- Ashburner, J.; Friston, K.J. Voxel-Based Morphometry—The Methods. NeuroImage 2000, 11, 805–821. [Google Scholar] [CrossRef]
- Zhang, Y.; Brady, M.; Smith, S. Segmentation of Brain MR Images through a Hidden Markov Random Field Model and the Expectation-Maximization Algorithm. IEEE Trans. Med. Imaging 2001, 20, 45–57. [Google Scholar] [CrossRef]
- Zhou, Y.; Bai, J. Atlas-Based Fuzzy Connectedness Segmentation and Intensity Nonuniformity Correction Applied to Brain MRI. IEEE Trans. Biomed. Eng. 2007, 54, 122–129. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, J.; Zhang, S.; Liang, Y.; Gong, Y. Active Contour Model Based on Local and Global Intensity Information for Medical Image Segmentation. Neurocomputing 2016, 186, 107–118. [Google Scholar] [CrossRef]
- Sled, J.G.; Zijdenbos, A.P.; Evans, A.C. A Nonparametric Method for Automatic Correction of Intensity Nonuniformity in MRI Data. IEEE Trans. Med. Imaging 1998, 17, 87–97. [Google Scholar] [CrossRef]
- Styner, M.; Brechbühler, C.; Székely, G.; Gerig, G. Parametric Estimate of Intensity Inhomogeneities Applied to MRI. IEEE Trans. Med. Imaging 2000, 19, 153–165. [Google Scholar] [CrossRef]
- Likar, B.; Viergever, M.A.; Pernuš, F. Retrospective Correction of MR Intensity Inhomogeneity by Information Minimization. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2000, Pittsburgh, PA, USA, 11–14 October 2000; Delp, S.L., DiGoia, A.M., Jaramaz, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 375–384. [Google Scholar]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 Bias Correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, L.; Schroeder, W.; Ng, L.; Cates, J. Insight Software Consortium. The ITK Software Guide, 2nd ed.; Kitware Inc.: Clifton Park, NY, USA, 2005; ISBN 1-930934-15-7. [Google Scholar]
- George, M.M.; Kalaivani, S.; Sudhakar, M.S. A Non-Iterative Multi-Scale Approach for Intensity Inhomogeneity Correction in MRI. Magn. Reson. Imaging 2017, 42, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, Z.; Hu, D.; Wang, F.; Smith, J.K.; Lin, W.; Wang, L.; Shen, D.; Li, G.; UNC/UMN Baby Connectome Project Consortium. ABCnet: Adversarial Bias Correction Network for Infant Brain MR Images. Med. Image Anal. 2021, 72, 102133. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, Y.; Hu, S.; Du, Y. Deep Convolutional Neural Networks for Bias Field Correction of Brain Magnetic Resonance Images. J. Supercomput. 2022, 78, 17943–17968. [Google Scholar] [CrossRef]
- Kanakaraj, P.; Yao, T.; Cai, L.Y.; Lee, H.H.; Newlin, N.R.; Kim, M.E.; Gao, C.; Pechman, K.R.; Archer, D.; Hohman, T.; et al. DeepN4: Learning N4ITK Bias Field Correction for T1-Weighted Images. Neuroinform 2024, 22, 193–205. [Google Scholar] [CrossRef]
- Makropoulos, A.; Gousias, I.S.; Ledig, C.; Aljabar, P.; Serag, A.; Hajnal, J.V.; Edwards, A.D.; Counsell, S.J.; Rueckert, D. Automatic Whole Brain MRI Segmentation of the Developing Neonatal Brain. IEEE Trans. Med. Imaging 2014, 33, 1818–1831. [Google Scholar] [CrossRef]
- Cardoso, M.J.; Melbourne, A.; Kendall, G.S.; Modat, M.; Robertson, N.J.; Marlow, N.; Ourselin, S. AdaPT: An Adaptive Preterm Segmentation Algorithm for Neonatal Brain MRI. NeuroImage 2013, 65, 97–108. [Google Scholar] [CrossRef]
- Mongerson, C.R.L.; Wilcox, S.L.; Goins, S.M.; Pier, D.B.; Zurakowski, D.; Jennings, R.W.; Bajic, D. Infant Brain Structural MRI Analysis in the Context of Thoracic Non-Cardiac Surgery and Critical Care. Front. Pediatr. 2019, 7, 315. [Google Scholar] [CrossRef]
- Rudisill, S.S.; Wang, J.T.; Jaimes, C.; Mongerson, C.R.L.; Hansen, A.R.; Jennings, R.W.; Bajic, D. Neurologic Injury and Brain Growth in the Setting of Long-Gap Esophageal Atresia Perioperative Critical Care: A Pilot Study. Brain Sci. 2019, 9, 383. [Google Scholar] [CrossRef]
- Adamson, C.L.; Alexander, B.; Kelly, C.E.; Ball, G.; Beare, R.; Cheong, J.L.Y.; Spittle, A.J.; Doyle, L.W.; Anderson, P.J.; Seal, M.L.; et al. Updates to the Melbourne Children’s Regional Infant Brain Software Package (M-CRIB-S). Neuroinformatics 2024, 22, 207–223. [Google Scholar] [CrossRef]
- Gui, L.; Lisowski, R.; Faundez, T.; Hüppi, P.S.; Lazeyras, F.; Kocher, M. Morphology-Driven Automatic Segmentation of MR Images of the Neonatal Brain. Med. Image Anal. 2012, 16, 1565–1579. [Google Scholar] [CrossRef] [PubMed]
- Moeskops, P.; Viergever, M.A.; Mendrik, A.M.; de Vries, L.S.; Benders, M.J.N.L.; Išgum, I. Automatic Segmentation of MR Brain Images With a Convolutional Neural Network. IEEE Trans. Med. Imaging 2016, 35, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.K.; Kelly, C.E.; Chen, J.; Beare, R.; Alexander, B.; Seal, M.L.; Lee, K.; Matthews, L.G.; Anderson, P.J.; Doyle, L.W.; et al. Early Life Predictors of Brain Development at Term-Equivalent Age in Infants Born across the Gestational Age Spectrum. NeuroImage 2019, 185, 813–824. [Google Scholar] [CrossRef]
- Jenkinson, M.; Pechaud, M.; Smith, S. BET2: MR-Based Estimation of Brain, Skull and Scalp Surfaces. In Proceedings of the Eleventh Annual Meeting of the Organization for Human Brain Mapping, Toronto, ON, Canada, 12–16 June 2005. [Google Scholar]
- Beare, R.J.; Chen, J.; Kelly, C.E.; Alexopoulos, D.; Smyser, C.D.; Rogers, C.E.; Loh, W.Y.; Matthews, L.G.; Cheong, J.L.Y.; Spittle, A.J.; et al. Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation. Front. Neuroinform. 2016, 10, 12. [Google Scholar] [CrossRef]
- Isensee, F.; Schell, M.; Pflueger, I.; Brugnara, G.; Bonekamp, D.; Neuberger, U.; Wick, A.; Schlemmer, H.-P.; Heiland, S.; Wick, W.; et al. Automated Brain Extraction of Multisequence MRI Using Artificial Neural Networks. Hum. Brain Mapp. 2019, 40, 4952–4964. [Google Scholar] [CrossRef]
- Hoopes, A.; Mora, J.S.; Dalca, A.V.; Fischl, B.; Hoffmann, M. SynthStrip: Skull-Stripping for Any Brain Image. NeuroImage 2022, 260, 119474. [Google Scholar] [CrossRef]
- Ashburner, J.; Friston, K.J. Unified Segmentation. NeuroImage 2005, 26, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Penny, W.D.; Friston, K.J.; Ashburner, J.T.; Kiebel, S.J.; Nichols, T.E. Statistical Parametric Mapping: The Analysis of Functional Brain Images, 1st ed.; Academic Press: Cambridge, MA, USA, 2006; ISBN 978-0-08-046650-7. [Google Scholar]
- MATLAB, Version 9.14.0 (R2023a); The MathWorks Inc.: Natick, MA, USA, 2023.
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Alexander, B.; Kelly, C.E.; Adamson, C.; Beare, R.; Zannino, D.; Chen, J.; Murray, A.L.; Loh, W.Y.; Matthews, L.G.; Warfield, S.K.; et al. Changes in Neonatal Regional Brain Volume Associated with Preterm Birth and Perinatal Factors. NeuroImage 2019, 185, 654–663. [Google Scholar] [CrossRef]
- Thompson, D.K.; Kelly, C.E.; Chen, J.; Beare, R.; Alexander, B.; Seal, M.L.; Lee, K.J.; Matthews, L.G.; Anderson, P.J.; Doyle, L.W.; et al. Characterisation of Brain Volume and Microstructure at Term-Equivalent Age in Infants Born across the Gestational Age Spectrum. NeuroImage Clin. 2019, 21, 101630. [Google Scholar] [CrossRef]
- Alexander, B.; Loh, W.Y.; Matthews, L.G.; Murray, A.L.; Adamson, C.; Beare, R.; Chen, J.; Kelly, C.E.; Anderson, P.J.; Doyle, L.W.; et al. Desikan-Killiany-Tourville Atlas Compatible Version of M-CRIB Neonatal Parcellated Whole Brain Atlas: The M-CRIB 2.0. Front. Neurosci. 2019, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.E.; Thompson, D.K.; Spittle, A.J.; Chen, J.; Seal, M.L.; Anderson, P.J.; Doyle, L.W.; Cheong, J.L.Y. Regional Brain Volumes, Microstructure and Neurodevelopment in Moderate-Late Preterm Children. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Treyvaud, K.; Thompson, D.; Kelly, C.; Loh, W.; Inder, T.; Cheong, J.; Doyle, L.; Anderson, P. Early Parenting Is Associated with the Developing Brains of Children Born Very Preterm. Clin. Neuropsychol. 2021, 35, 885–903. [Google Scholar] [CrossRef] [PubMed]
- Monson, B.B.; Anderson, P.J.; Matthews, L.G.; Neil, J.J.; Kapur, K.; Cheong, J.L.Y.; Doyle, L.W.; Thompson, D.K.; Inder, T.E. Examination of the Pattern of Growth of Cerebral Tissue Volumes From Hospital Discharge to Early Childhood in Very Preterm Infants. JAMA Pediatr. 2016, 170, 772–779. [Google Scholar] [CrossRef]
- Granger, C.; Spittle, A.J.; Walsh, J.; Pyman, J.; Anderson, P.J.; Thompson, D.K.; Lee, K.J.; Coleman, L.; Dagia, C.; Doyle, L.W.; et al. Histologic Chorioamnionitis in Preterm Infants: Correlation with Brain Magnetic Resonance Imaging at Term Equivalent Age. BMC Pediatr. 2018, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Matthews, L.G.; Smyser, C.D.; Cherkerzian, S.; Alexopoulos, D.; Kenley, J.; Tuuli, M.G.; Michael Nelson, D.; Inder, T.E. Maternal Pomegranate Juice Intake and Brain Structure and Function in Infants with Intrauterine Growth Restriction: A Randomized Controlled Pilot Study. PLoS ONE 2019, 14, e0219596. [Google Scholar] [CrossRef]
- Vanderhasselt, T.; Naeyaert, M.; Watté, N.; Allemeersch, G.-J.; Raeymaeckers, S.; Dudink, J.; de Mey, J.; Raeymaekers, H. Synthetic MRI of Preterm Infants at Term-Equivalent Age: Evaluation of Diagnostic Image Quality and Automated Brain Volume Segmentation. AJNR Am. J. Neuroradiol. 2020, 41, 882–888. [Google Scholar] [CrossRef]
- Kuklisova-Murgasova, M.; Aljabar, P.; Srinivasan, L.; Counsell, S.J.; Doria, V.; Serag, A.; Gousias, I.S.; Boardman, J.P.; Rutherford, M.A.; Edwards, A.D.; et al. A Dynamic 4D Probabilistic Atlas of the Developing Brain. NeuroImage 2011, 54, 2750–2763. [Google Scholar] [CrossRef]
- Merkel, D. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux J. 2014, 239, 2. [Google Scholar]
- Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.J.; Woolrich, M.W.; Smith, S.M. FSL. NeuroImage 2012, 62, 782–790. [Google Scholar] [CrossRef]
- IBM Corp. Released 2022. IBM SPSS Statistics for Windows, Version 29.0.0; IBM Corp: Armonk, NY, USA, 2022.
- Portney, L.G. Foundations of Clinical Research: Applications to Evidence-Based Practice, 4th ed.; F.A. Davis: Philadelphia, PA, USA, 2020; ISBN 978-0-8036-6113-4. [Google Scholar]
- Gispert, J.D.; Reig, S.; Pascau, J.; Vaquero, J.J.; García-Barreno, P.; Desco, M. Method for Bias Field Correction of Brain T1-weighted Magnetic Resonance Images Minimizing Segmentation Error. Hum. Brain Mapp. 2004, 22, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Manjón, J.V.; Lull, J.J.; Carbonell-Caballero, J.; García-Martí, G.; Martí-Bonmatí, L.; Robles, M. A Nonparametric MRI Inhomogeneity Correction Method. Med. Image Anal. 2007, 11, 336–345. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, B.; Zhang, J.; Zheng, Y. Automatic Segmentation for Brain MR Images via a Convex Optimized Segmentation and Bias Field Correction Coupled Model. Magn. Reson. Imaging 2014, 32, 941–955. [Google Scholar] [CrossRef]
- Xie, M.; Gao, J.; Zhu, C.; Zhou, Y. A Modified Method for MRF Segmentation and Bias Correction of MR Image with Intensity Inhomogeneity. Med. Biol. Eng. Comput. 2015, 53, 23–35. [Google Scholar] [CrossRef]
- Bae, I.; Chae, J.-H.; Han, Y. A Brain Extraction Algorithm for Infant T2 Weighted Magnetic Resonance Images Based on Fuzzy C-Means Thresholding. Sci. Rep. 2021, 11, 23347. [Google Scholar] [CrossRef]
- Taha, A.A.; Hanbury, A. Metrics for Evaluating 3D Medical Image Segmentation: Analysis, Selection, and Tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef]
- Weiss, D.A.; Saluja, R.; Xie, L.; Gee, J.C.; Sugrue, L.P.; Pradhan, A.; Nick Bryan, R.; Rauschecker, A.M.; Rudie, J.D. Automated Multiclass Tissue Segmentation of Clinical Brain MRIs with Lesions. NeuroImage Clin. 2021, 31, 102769. [Google Scholar] [CrossRef] [PubMed]
- Mahapatra, D. Skull Stripping of Neonatal Brain MRI: Using Prior Shape Information with Graph Cuts. J. Digit. Imaging 2012, 25, 802–814. [Google Scholar] [CrossRef] [PubMed]
- Péporté, M.; Ilea Ghita, D.E.; Twomey, E.; Whelan, P.F. A Hybrid Approach to Brain Extraction from Premature Infant MRI. In Image Analysis. SCIA 2011; Lecture Notes in Computer Science; Heyden, A., Kahl, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6688, pp. 719–730. [Google Scholar]
- Wang, L.; Wu, Z.; Chen, L.; Sun, Y.; Lin, W.; Li, G. iBEAT V2.0: A Multisite-Applicable, Deep Learning-Based Pipeline for Infant Cerebral Cortical Surface Reconstruction. Nat. Protoc. 2023, 18, 1488–1509. [Google Scholar] [CrossRef]
- Serag, A.; Blesa, M.; Moore, E.J.; Pataky, R.; Sparrow, S.A.; Wilkinson, A.G.; Macnaught, G.; Semple, S.I.; Boardman, J.P. Accurate Learning with Few Atlases (ALFA): An Algorithm for MRI Neonatal Brain Extraction and Comparison with 11 Publicly Available Methods. Sci. Rep. 2016, 6, 23470. [Google Scholar] [CrossRef]
- Shi, F.; Wang, L.; Dai, Y.; Gilmore, J.H.; Lin, W.; Shen, D. LABEL: Pediatric Brain Extraction Using Learning-Based Meta-Algorithm. NeuroImage 2012, 62, 1975–1986. [Google Scholar] [CrossRef] [PubMed]
- Gousias, I.S.; Edwards, A.D.; Rutherford, M.A.; Counsell, S.J.; Hajnal, J.V.; Rueckert, D.; Hammers, A. Magnetic Resonance Imaging of the Newborn Brain: Manual Segmentation of Labelled Atlases in Term-Born and Preterm Infants. NeuroImage 2012, 62, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Moser, E.; Stahlberg, F.; Ladd, M.E.; Trattnig, S. 7-T MR--from Research to Clinical Applications? NMR Biomed. 2012, 25, 695–716. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Abdul-Rahman, M.F.; Rifkin-Graboi, A.; Chong, Y.-S.; Kwek, K.; Saw, S.-M.; Godfrey, K.M.; Gluckman, P.D.; Fortier, M.V.; Meaney, M.J.; et al. Population Differences in Brain Morphology and Microstructure among Chinese, Malay, and Indian Neonates. PLoS ONE 2012, 7, e47816. [Google Scholar] [CrossRef]
- Benavides, A.; Metzger, A.; Tereschenko, S.; Conrad, A.; Bell, E.F.; Spencer, J.; Ross-Sheehy, S.; Georgieff, M.; Magnotta, V.; Nopoulos, P. Sex Specific Alterations in Preterm Brain. Pediatr. Res. 2019, 85, 55–62. [Google Scholar] [CrossRef]
- Khan, Y.T.; Tsompanidis, A.; Radecki, M.A.; Dorfschmidt, L.; Adhya, D.; Ayeung, B.; Bamford, R.; Biron-Shental, T.; Burton, G.; Cowell, W.; et al. Sex Differences in Human Brain Structure at Birth. Biol. Sex Differ. 2024, 15, 81. [Google Scholar] [CrossRef]
- Geng, X.; Chan, P.H.; Lam, H.S.; Chu, W.C.; Wong, P.C. Brain Templates for Chinese Babies from Newborn to Three Months of Age. NeuroImage 2024, 289, 120536. [Google Scholar] [CrossRef]
- Valdés Hernández, M.d.C.; González-Castro, V.; Ghandour, D.T.; Wang, X.; Doubal, F.; Muñoz Maniega, S.; Armitage, P.A.; Wardlaw, J.M. On the Computational Assessment of White Matter Hyperintensity Progression: Difficulties in Method Selection and Bias Field Correction Performance on Images with Significant White Matter Pathology. Neuroradiology 2016, 58, 475–485. [Google Scholar] [CrossRef]
- Chen, J.V.; Li, Y.; Tang, F.; Chaudhari, G.; Lew, C.; Lee, A.; Rauschecker, A.M.; Haskell-Mendoza, A.P.; Wu, Y.W.; Calabrese, E. Automated Neonatal nnU-Net Brain MRI Extractor Trained on a Large Multi-Institutional Dataset. Sci. Rep. 2024, 14, 4583. [Google Scholar] [CrossRef]
Bias Field Correction Method | ||||
---|---|---|---|---|
Measure | Brain Extraction Method | Uncorrected | SPM-BFC | N4ITK |
CV (WM) | Manual | 0.056 ± 0.009 | 0.057 ± 0.011 | 0.048 ± 0.006 |
BET2 | 0.056 ± 0.009 | 0.058 ± 0.011 | 0.048 ± 0.005 | |
SWS | 0.055 ± 0.009 | 0.057 ± 0.011 | 0.047 ± 0.006 | |
HD-BET | 0.056 ± 0.009 | 0.058 ± 0.011 | 0.047 ± 0.005 | |
SynthStrip | 0.056 ± 0.009 | 0.057 ± 0.011 | 0.048 ± 0.005 | |
CV (GM) | Manual | 0.075 ± 0.004 | 0.078 ± 0.003 | 0.072 ± 0.004 |
BET2 | 0.075 ± 0.003 | 0.078 ± 0.002 | 0.073 ± 0.003 | |
SWS | 0.076 ± 0.004 | 0.078 ± 0.002 | 0.073 ± 0.003 | |
HD-BET | 0.075 ± 0.004 | 0.078 ± 0.002 | 0.070 ± 0.005 | |
SynthStrip | 0.075 ± 0.004 | 0.081 ± 0.004 | 0.072 ± 0.003 | |
CJV (WM,GM) | Manual | 0.698 ± 0.113 | 0.718 ± 0.111 | 0.675 ± 0.078 |
BET2 | 0.700 ± 0.109 | 0.717 ± 0.108 | 0.670 ± 0.072 | |
SWS | 0.699 ± 0.111 | 0.720 ± 0.109 | 0.676 ± 0.071 | |
HD-BET | 0.700 ± 0.115 | 0.718 ± 0.112 | 0.662 ± 0.095 | |
SynthStrip | 0.699 ± 0.112 | 0.726 ± 0.108 | 0.671 ± 0.069 |
Brain Tissue | Bias Field Correction Method | Brain Extraction Method | ||||
---|---|---|---|---|---|---|
Manual | BET2 | SWS | HD-BET | SynthStrip | ||
Cortical Grey Matter | SPM-BFC | 175.5 ± 18.6 176.6 | 176.4 ± 18.6 176.9 | 175.5 ± 18.3 176.6 | 177.0 ± 18.3 178.0 | 180.2 ± 18.9 180.1 |
N4ITK | 178.0 ± 19.3 179.1 | 178.1 ± 18.8 179.3 | 177.5 ± 18.8 176.3 | 178.8 ± 18.7 178.5 | 182.1 ± 19.3 181.4 | |
White Matter | SPM-BFC | 131.7 ± 17.3 132.8 | 132.7 ± 16.5 134.5 | 131.0 ± 17.1 131.1 | 131.3 ± 16.6 132.6 | 131.1 ± 16.2 132.9 |
N4ITK | 130.2 ± 16.7 130.2 | 132.1 ± 16.6 132.5 | 129.4 ± 16.5 129.1 | 130.0 ± 16.1 130.1 | 130.3 ± 15.9 132.6 | |
Cerebral Spinal Fluid | SPM-BFC | 67.6 ± 21.3 68.3 | 64.9 ± 20.4 63.1 | 64.9 ± 22.3 66.9 | 68.4 ± 20.7 68.8 | 58.4 ± 16.8 54.9 |
N4ITK | 66.3 ± 20.4 64.4 | 64.0 ± 20.2 61.4 | 64.2 ± 21.7 65.8 | 67.7 ± 20.0 68.4 | 57.2 ± 16.1 53.0 | |
Deep Nuclear Grey Matter | SPM-BFC | 26.0 ± 2.5 26.6 | 25.8 ± 2.4 26.6 | 26.2 ± 2.5 26.9 | 25.9 ± 2.5 26.5 | 25.8 ± 2.4 26.5 |
N4ITK | 25.9 ± 2.4 26.4 | 25.7 ± 2.4 26.1 | 26.1 ± 2.5 26.5 | 25.8 ± 2.4 26.2 | 25.7 ± 2.4 26.2 | |
Hippocampus | SPM-BFC | 3.0 ± 0.5 3.0 | 3.0 ± 0.4 3.0 | 3.0 ± 0.5 3.0 | 3.0 ± 0.5 3.0 | 2.9 ± 0.5 2.9 |
N4ITK | 2.9 ± 0.5 2.9 | 2.9 ± 0.4 3.0 | 3.0 ± 0.4 3.0 | 3.0 ± 0.4 3.0 | 2.9 ± 0.4 2.9 | |
Amygdala | SPM-BFC | 1.4 ± 0.2 1.4 | 1.4 ± 0.2 1.4 | 1.4 ± 0.3 1.4 | 1.4 ± 0.2 1.4 | 1.4 ± 0.2 1.3 |
N4ITK | 1.3 ± 0.2 1.3 | 1.3 ± 0.2 1.3 | 1.4 ± 0.2 1.4 | 1.4 ± 0.2 1.4 | 1.3 ± 0.2 1.3 | |
Cerebellum | SPM-BFC | 27.0 ± 3.5 26.9 | 27.1 ± 3.4 27.0 | 25.8 ± 3.5 25.2 | 26.8 ± 3.3 26.5 | 26.8 ± 3.4 26.5 |
N4ITK | 26.9 ± 3.4 26.2 | 27.1 ± 3.3 26.8 | 25.8 ± 3.5 25.4 | 26.8 ± 3.2 26.4 | 26.8 ± 3.3 26.5 | |
Brainstem | SPM-BFC | 6.5 ± 0.8 6.3 | 6.4 ± 0.7 6.3 | 6.5 ± 0.7 6.5 | 6.3 ± 0.7 6.1 | 6.4 ± 0.7 6.2 |
N4ITK | 6.4 ± 0.7 6.3 | 6.3 ± 0.7 6.2 | 6.4 ± 0.7 6.3 | 6.2 ± 0.7 6.1 | 6.3 ± 0.7 6.1 |
Brain Tissue | Brain Extraction Method | Z | p |
---|---|---|---|
Cortical Grey Matter | Manual | −3.703 | <0.001 * |
BET2 | −3.329 | <0.001 * | |
SWS | −3.524 | <0.001 * | |
HD-BET | −3.053 | 0.002 * | |
SynthStrip | −3.052 | 0.002 * | |
White Matter | Manual | −3.739 | <0.001 * |
BET2 | −1.844 | 0.065 | |
SWS | −3.634 | <0.001 * | |
HD-BET | −3.287 | 0.001 * | |
SynthStrip | −2.348 | 0.019 * | |
Cerebral Spinal Fluid | Manual | −3.268 | <0.001 * |
BET2 | −2.975 | 0.003 * | |
SWS | −2.018 | 0.044 * | |
HD-BET | −2.439 | 0.015 * | |
SynthStrip | −2.868 | 0.004 * | |
Deep Nuclear Grey Matter | Manual | −1.575 | 0.115 |
BET2 | −2.208 | 0.027 * | |
SWS | −1.947 | 0.052 | |
HD-BET | −1.596 | 0.110 | |
SynthStrip | −1.656 | 0.098 | |
Hippocampus | Manual | −1.353 | 0.176 |
BET2 | −2.345 | 0.019 * | |
SWS | −0.046 | 0.963 | |
HD-BET | −0.410 | 0.682 | |
SynthStrip | −0.206 | 0.837 | |
Amygdala | Manual | −2.489 | 0.013 * |
BET2 | −2.111 | 0.035 * | |
SWS | −1.845 | 0.065 | |
HD-BET | −1.508 | 0.132 | |
SynthStrip | −1.732 | 0.083 | |
Cerebellum | Manual | −0.676 | 0.499 |
BET2 | −0.598 | 0.598 | |
SWS | −1.314 | 0.189 | |
HD-BET | −0.219 | 0.827 | |
SynthStrip | −0.564 | 0.573 | |
Brainstem | Manual | −2.234 | 0.025 * |
BET2 | −2.841 | 0.005 * | |
SWS | −2.559 | 0.010 * | |
HD-BET | −3.207 | 0.001 * | |
SynthStrip | −3.317 | <0.001 * |
Brain Tissue | Bias Field Correction Method | χ2 | p | Kendall’s W |
---|---|---|---|---|
Cortical Grey Matter | SPM-BFC | 49.565 | <0.001 * | 0.563 |
N4ITK | 30.032 | <0.001 * | 0.341 | |
White Matter | SPM-BFC | 24.176 | <0.001 * | 0.275 |
N4ITK | 24.836 | <0.001 * | 0.282 | |
Cerebral Spinal Fluid | SPM-BFC | 50.804 | <0.001 * | 0.577 |
N4ITK | 40.545 | <0.001 * | 0.461 | |
Deep Nuclear Grey Matter | SPM-BFC | 31.852 | <0.001 * | 0.362 |
N4ITK | 30.378 | <0.001 * | 0.345 | |
Hippocampus | SPM-BFC | 8.160 | 0.086 | 0.093 |
N4ITK | 7.116 | 0.130 | 0.081 | |
Amygdala | SPM-BFC | 8.442 | 0.077 | 0.096 |
N4ITK | 11.067 | 0.026 * | 0.126 | |
Cerebellum | SPM-BFC | 55.486 | <0.001 * | 0.631 |
N4ITK | 54.740 | <0.001 * | 0.622 | |
Brainstem | SPM-BFC | 35.186 | <0.001 * | 0.400 |
N4ITK | 35.675 | <0.001 * | 0.405 |
Cortical Grey Matter | ||||||||
---|---|---|---|---|---|---|---|---|
SPM-BFC | N4ITK | |||||||
BET2 | SWS | HD-BET | SynthStrip | BET2 | SWS | HD-BET | SynthStrip | |
Manual | p = 1.000 r = 0.230 | p = 1.000 r = 0.007 | p = 0.017 * r = 0.474 | p < 0.001 * r = 0.884 | p = 1.000 r = 0.101 | p = 1.000 r = 0.072 | p = 0.952 r = 0.252 | p < 0.001 * r = 0.654 |
BET2 | - | p = 1.000 r = 0.237 | p = 1.000 r = 0.244 | p < 0.001 * r = 0.654 | - | p = 1.000 r = 0.137 | p = 1.000 r = 0.187 | p < 0.001 * r = 0.589 |
SWS | - | - | p = 0.014 * r = 0.482 | p < 0.001 * r = 0.891 | - | - | p = 0.319 r = 0.323 | p < 0.001 * r = 0.726 |
HD-BET | - | - | - | p = 0.066 r = 0.410 | - | - | - | p = 0.076 r = 0.403 |
White Matter | ||||||||
SPM-BFC | N4ITK | |||||||
BET2 | SWS | HD-BET | SynthStrip | BET2 | SWS | HD-BET | SynthStrip | |
Manual | p = 0.283 r = 0.331 | p = 0.404 r = 0.309 | p = 1.000 r = 0.216 | p = 1.000 r = 0.237 | p = 0.031 * r = 0.446 | p = 1.000 r = 0.244 | p = 1.000 r = 0.144 | p = 1.000 r = 0.057 |
BET2 | - | p < 0.001 * r = 0.640 | p = 0.003 * r = 0.546 | p = 0.002 * r = 0.568 | - | p < 0.001 * r = 0.690 | p < 0.001 * r = 0.589 | p = 0.008 * r = 0.503 |
SWS | - | - | p = 1.000 r = 0.093 | p = 1.000 r = 0.072 | - | - | p = 1.000 r = 0.101 | p = 1.000 r = 0.187 |
HD-BET | - | - | - | p = 1.000 r = 0.022 | - | - | - | p = 1.000 r = 0.086 |
Cerebral Spinal Fluid | ||||||||
SPM-BFC | N4ITK | |||||||
BET2 | SWS | HD-BET | SynthStrip | BET2 | SWS | HD-BET | SynthStrip | |
Manual | p = 0.250 r = 0.338 | p = 0.132 r = 0.374 | p = 1.000 r = 0.122 | p < 0.001 * r = 0.848 | p = 0.701 r = 0.273 | p = 0.453 r = 0.302 | p = 1.000 r = 0.115 | p < 0.001 * r = 0.762 |
BET2 | - | p = 1.000 r = 0.036 | p = 0.023 * r = 0.460 | p = 0.007 * r = 0.510 | - | p = 1.000 r = 0.029 | p = 1.000 r = 0.388 | p = 0.012 * r = 0.489 |
SWS | - | - | p = 0.010 * r = 0.496 | p = 0.017 * r = 0.474 | - | - | p = 0.057 r = 0.417 | p = 0.023 * r = 0.460 |
HD-BET | - | - | - | p < 0.001 * r = 0.970 | - | - | - | p < 0.001 * r = 0.877 |
Deep Nuclear Grey Matter | ||||||||
SPM-BFC | N4ITK | |||||||
BET2 | SWS | HD-BET | SynthStrip | BET2 | SWS | HD-BET | SynthStrip | |
Manual | p = 0.100 r = 0.158 | p = 0.066 r = 0.410 | p = 1.000 r = 0.137 | p = 0.150 r = 0.366 | p = 0.100 r = 0.388 | p = 0.506 r = 0.295 | p = 1.000 r = 0.122 | p = 0.171 r = 0.359 |
BET2 | - | p = 0.002 * r = 0.568 | p = 1.000 r = 0.022 | p = 1.000 r = 0.208 | - | p < 0.001 * r = 0.683 | p = 0.777 r = 0.266 | p = 1.000 r = 0.029 |
SWS | - | - | p = 0.003 * r = 0.546 | p < 0.001 * r = 0.776 | - | - | p = 0.057 r = 0.417 | p < 0.001 * r = 0.654 |
HD-BET | - | - | - | p = 1.000 r = 0.230 | - | - | - | p = 1.000 r = 0.237 |
Amygdala | ||||||||
SPM-BFC | N4ITK | |||||||
BET2 | SWS | HD-BET | SynthStrip | BET2 | SWS | HD-BET | SynthStrip | |
Manual | - | - | - | - | p = 1.000 r = 0.036 | p = 1.000 r = 0.108 | p = 1.000 r = 0.144 | p = 1.000 r = 0.108 |
BET2 | - | - | - | - | - | p = 1.000 r = 0.144 | p = 1.000 r = 0.180 | p = 1.000 r = 0.072 |
SWS | - | - | - | - | - | - | p = 1.000 r = 0.036 | p = 1.000 r = 0.216 |
HD-BET | - | - | - | - | - | - | - | p = 0.952 r = 0.252 |
Cerebellum | ||||||||
SPM-BFC | N4ITK | |||||||
BET2 | SWS | HD-BET | SynthStrip | BET2 | SWS | HD-BET | SynthStrip | |
Manual | p = 1.000 r = 0.108 | p < 0.001 * r = 0.891 | p = 0.861 r = 0.259 | p = 0.565 r = 0.287 | p = 1.000 r = 0.223 | p < 0.001 * r = 0.805 | p = 1.000 r = 0.216 | p = 1.000 r = 0.137 |
BET2 | - | p < 0.001 * r = 0.999 | p = 0.150 r = 0.366 | p = 0.087 r = 0.395 | - | p < 0.001 * r = 1.028 | p = 0.036 * r = 0.438 | p = 0.171 r = 0.359 |
SWS | - | - | p < 0.001 * r = 0.632 | p < 0.001 * r = 0.604 | - | - | p < 0.001 * r = 0.589 | p < 0.001 * r = 0.668 |
HD-BET | - | - | - | p = 1.000 r = 0.029 | - | - | - | p = 1.000 r = 0.079 |
Brainstem | ||||||||
SPM-BFC | N4ITK | |||||||
BET2 | SWS | HD-BET | SynthStrip | BET2 | SWS | HD-BET | SynthStrip | |
Manual | p = 1.000 r = 0.093 | p = 1.000 r = 0.244 | p = 0.003 * r = 0.539 | p = 0.506 r = 0.295 | p = 1.000 r = 0.151 | p = 1.000 r = 0.208 | p = 0.002 * r = 0.568 | p = 1.000 r = 0.316 |
BET2 | - | p = 0.250 r = 0.338 | p = 0.031 * r = 0.446 | p = 1.000 r = 0.201 | - | p = 0.171 r = 0.359 | p = 0.057 r = 0.417 | p = 1.000 r = 0.165 |
SWS | - | - | p < 0.001 * r = 0.783 | p = 0.003 * r = 0.539 | - | - | p < 0.001 * r = 0.776 | p = 0.005 * r = 0.525 |
HD-BET | - | - | - | p = 1.000 r = 0.244 | - | - | - | p = 0.952 r = 0.252 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaz, T.F.; Naseh, N.; Hellström-Westas, L.; Moreira, N.C.; Matela, N.; Ferreira, H.A. Assessment of Regional Brain Volume Measurements with Different Brain Extraction and Bias Field Correction Methods in Neonatal MRI. Appl. Sci. 2024, 14, 11575. https://doi.org/10.3390/app142411575
Vaz TF, Naseh N, Hellström-Westas L, Moreira NC, Matela N, Ferreira HA. Assessment of Regional Brain Volume Measurements with Different Brain Extraction and Bias Field Correction Methods in Neonatal MRI. Applied Sciences. 2024; 14(24):11575. https://doi.org/10.3390/app142411575
Chicago/Turabian StyleVaz, Tânia F., Nima Naseh, Lena Hellström-Westas, Nuno Canto Moreira, Nuno Matela, and Hugo A. Ferreira. 2024. "Assessment of Regional Brain Volume Measurements with Different Brain Extraction and Bias Field Correction Methods in Neonatal MRI" Applied Sciences 14, no. 24: 11575. https://doi.org/10.3390/app142411575
APA StyleVaz, T. F., Naseh, N., Hellström-Westas, L., Moreira, N. C., Matela, N., & Ferreira, H. A. (2024). Assessment of Regional Brain Volume Measurements with Different Brain Extraction and Bias Field Correction Methods in Neonatal MRI. Applied Sciences, 14(24), 11575. https://doi.org/10.3390/app142411575