Detection of Fusarium Head Blight in Wheat Ears Using Continuous Wavelet Analysis and PSO-SVM
<p>The workflow of the study.</p> "> Figure 2
<p>Field survey and FHB-infected ear of winter wheat the three diseases severity: (<b>a</b>) field survey, (<b>b</b>) healthy wheat ears, (<b>c</b>) wheat ears with mild infection, (<b>d</b>) wheat ears with severe infection.</p> "> Figure 3
<p>Flowchart of wavelet feature extraction using continuous wavelet analysis.</p> "> Figure 4
<p>Flowchart of particle swarm optimized support vector machine detection model.</p> "> Figure 5
<p>Reflectance spectrum and correlation curve of normal and diseased samples of wheat ear: (<b>a</b>) reflectance spectrum of healthy, mild and severe wheat ear samples (350–1000 nm) and (<b>b</b>) correlation coefficient between reflectance and disease severity.</p> "> Figure 6
<p>Visualization of the correlation scalogram generated using continuous wavelet analysis. The orange region represents a sensitive wavelet feature region (R<sup>2</sup> > 0.62).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Areas
2.2. Data Acquisition
2.3. Analysis Methods
2.3.1. Continuous Wavelet Analysis
2.3.2. Traditional Spectral Features
2.3.3. Model Construction and Evaluation
- The penalty parameter c and the radial basis function parameter gamma are encoded in the form of real number vectors as the particle positions of PSO. The parameters of PSO are initialized, such as the number of iterations, population size, inertia factor, learning factor, and the location and velocity of each particle.
- The particle fitness value is set as the classification accuracy, and the suitability value of each particle is calculated on the basis of the position parameters of the initial particle. The individual particle extremum, Pbest and the population extremum, Gbest, are updated according to the suitability value.
- The values of velocity, position and suitability of each particle are recalculated by iteration, and then the group extreme value, Gbest, and the individual extreme value, Pbest, are adjusted according to the suitability value in the new population after the iteration.
- When the maximum number of iterations is reached, the location parameter of the particle with the highest suitability value is displayed as the penalty parameter c and the function parameter gamma.
- The optimal penalty parameter c and the radial basis function parameter gamma obtained via the PSO algorithm are substituted in the SVM for the construction of the PSO-SVM detection model.
3. Results and Discussion
3.1. Variations in Reflectance Spectra Due to Fusarium Head Blight
3.2. Sensitivities to Fusarium Head Blight with Wavelet Features
3.3. Sensitivities to Fusarium Head Blight with Traditional Spectral Features
3.4. Detection Model of Fusarium Head Blight
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Banerjee, K.; Krishnan, P.; Das, B. Thermal imaging and multivariate techniques for characterizing and screening wheat genotypes under water stress condition. Ecol. Indic. 2020, 119, 16. [Google Scholar] [CrossRef]
- Machado, L.V.; Mallmann, C.A.; Mallmann, A.O.; Coelho, R.D.; Copetti, M.V. Deoxynivalenol in wheat and wheat products from a harvest affected by fusarium head blight. Food Sci. Technol. 2017, 37, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Malbran, I.; Mourelos, C.A.; Pardi, M.; Oufensou, S.; Balmas, V.; Delogu, G.; Migheli, Q.; Lori, G.A.; Juarez, M.P.; Girotti, J.R. Commercially available natural inhibitors of trichothecene production in Fusarium graminearum: A strategy to manage Fusarium head blight of wheat. Crop Prot. 2020, 138, 7. [Google Scholar] [CrossRef]
- Ollier, M.; Talle, V.; Brisset, A.L.; Le Bihan, Z.; Duerr, S.; Lemmens, M.; Goudemand, E.; Robert, O.; Hilbert, J.L.; Buerstmayr, H. QTL mapping and successful introgression of the spring wheat-derived QTL Fhb1 for Fusarium head blight resistance in three European triticale populations. Theor. Appl. Genet. 2020, 133, 457–477. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.S.; Zhang, H.S.; Huang, W.J.; Dong, Y.Y.; Ye, H.C.; Ma, H.Q.; Zhao, J.L. Identification of Fusarium head blight in wheat ears using vertical angle-based reflectance spectroscopy. Arab. J. Geosci. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Qiu, R.; Yang, C.; Moghimi, A.; Zhang, M.; Steffenson, B.J.; Hirsch, C.D. Detection of fusarium head blight in wheat using a deep neural network and color imaging. Remote Sens. 2019, 11, 2658. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Chen, G.; Zhang, H.; Jin, N.; Gu, C.; Weng, S.; Wang, Q.; Chen, Y. Integration of spectroscopy and image for identifying fusarium damage in wheat kernels. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 236, 118344. [Google Scholar] [CrossRef] [PubMed]
- Su, W.-H.; Zhang, J.; Yang, C.; Page, R.; Szinyei, T.; Hirsch, C.D.; Steffenson, B.J. Automatic evaluation of wheat resistance to fusarium head blight using dual mask-RCNN deep learning frameworks in computer vision. Remote Sens. 2020, 13, 26. [Google Scholar] [CrossRef]
- Feng, W.; Shen, W.Y.; He, L.; Duan, J.Z.; Guo, B.B.; Li, Y.X.; Wang, C.Y.; Guo, T.C. Improved remote sensing detection of wheat powdery mildew using dual-green vegetation indices. Precis. Agric. 2016, 17, 608–627. [Google Scholar] [CrossRef]
- Jing, X.; Bai, Z.; Gao, Y. Wheat stripe rust monitoring by random forest algorithm combined with SIF and reflectance spectrum. Trans. CSAE 2019, 35, 154–161. [Google Scholar]
- Huang, L.; Wu, Z.; Huang, W.; Ma, H.; Zhao, J. Identification of fusarium head blight in winter wheat ears based on fisher’s linear discriminant analysis and a support vector machine. Appl. Sci. 2019, 9, 3894. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Huang, W.J.; Cui, X.M.; Dong, Y.Y.; Shi, Y.; Ma, H.Q.; Liu, L.Y. Identification of wheat yellow rust using optimal three-band spectral indices in different growth stages. Sensors 2019, 19, 35. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, J.J.; Xia, A.Q.; Zhang, K.Y.; Dong, X.Y.; Wu, K.P.; Wu, G.F. Continuous wavelet analysis of leaf reflectance improves classification accuracy of mangrove species. Remote Sens. 2019, 11, 254. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.W.; Shen, Q.; Nie, C.J.; Huang, Y.F.; Wang, J.H.; Hu, Q.Q.; Ding, X.J.; Zhou, Y.; Chen, Y.P. Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Spectroc. Acta Part A Molec. Biomolec. Spectr. 2019, 211, 393–400. [Google Scholar] [CrossRef]
- Zhang, J.C.; Yuan, L.; Wang, J.H.; Huang, W.J.; Chen, L.P.; Zhang, D.Y. Spectroscopic leaf level detection of powdery mildew for winter wheat using continuous wavelet analysis. J. Integr. Agric. 2012, 11, 1474–1484. [Google Scholar] [CrossRef]
- Chen, J.X.; Li, F.; Wang, R.; Fan, Y.F.; Raza, M.A.; Liu, Q.L.; Wang, Z.L.; Cheng, Y.J.; Wu, X.L.; Yang, F.; et al. Estimation of nitrogen and carbon content from soybean leaf reflectance spectra using wavelet analysis under shade stress. Comput. Electron. Agric. 2019, 156, 482–489. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.; Zhou, X. Evaluation of wavelet spectral features in pathological detection and discrimination of yellow rust and powdery mildew in winter wheat with hyperspectral reflectance data. J. Appl. Remote Sens. 2017, 11, 026025. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Ding, J.L.; Zhu, C.M.; Wang, J.Z.; Ma, G.L.; Ge, X.Y.; Li, Z.S.; Han, L.J. Strategies for the efficient estimation of soil organic matter in salt-affected soils through Vis-NIR spectroscopy: Optimal band combination algorithm and spectral degradation. Geoderma 2021, 382, 13. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.L.; Zhang, F.; Chan, N.W.; Kung, H.T.; Liu, S.H.; Deng, L.F. Estimation of soil salt content using machine learning techniques based on remote-sensing fractional derivatives, a case study in the Ebinur Lake Wetland National Nature Reserve, Northwest China. Ecol. Indic. 2020, 119, 106869. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, H.; Ruan, C.; Huang, W.; Hu, T.; Zhao, J. Detection of scab in wheat ears using in situ hyperspectral data and support vector machine optimized by genetic algorithm. Int. J. Agric. Biol. Eng. 2020, 13, 182–188. [Google Scholar] [CrossRef]
- Liu, C.J.; Zhang, F.; Ge, X.Y.; Zhang, X.L.; Chan, N.W.; Qi, Y.X. Measurement of total nitrogen concentration in surface water using hyperspectral band observation method. Water 2020, 12, 18. [Google Scholar] [CrossRef]
- Jin, X.; Jie, L.; Wang, S.; Qi, H.; Li, S. Classifying wheat hyperspectral pixels of healthy heads and fusarium head blight disease using a deep neural network in the wild field. Remote Sens. 2018, 10, 395. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.C.; Wang, B.; Zhang, X.X.; Liu, P.; Dong, Y.Y.; Wu, K.H.; Huang, W.J. Impact of spectral interval on wavelet features for detecting wheat yellow rust with hyperspectral data. Int. J. Agric. Biol. Eng. 2018, 11, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yuan, L.; Pu, R.; Loraamm, R.W.; Yang, G.; Wang, J. Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat. Comput. Electron. Agric. 2014, 100, 79–87. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.; González-Moreno, P.; Luke, B.; Dong, Y.; Zheng, Q.; Ma, H.; Liu, L. Wavelet-based rust spectral feature set (WRSFs): A novel spectral feature set based on continuous wavelet transformation for tracking progressive host–pathogen interaction of yellow rust on wheat. Remote Sens. 2018, 10, 525. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.W.; Du, Y.; Zhou, J.; Wang, D.L.; Luo, M.; Zhang, Y.J.; Guo, W.S. Analysis of different hyperspectral variables for diagnosing leaf nitrogen accumulation in wheat. Front. Plant Sci. 2018, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Pu, R.; Ge, S.; Kelly, N.M.; Gong, P. Spectral absorption features as indicators of water status in coast live oak (Quercus agrifolia) leaves. Int. J. Remote Sens. 2003, 24, 1799–1810. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Q.; Lin, F.; Yin, X.; Gu, C.; Qiao, H. Development and evaluation of a new spectral disease index to detect wheat fusarium head blight using hyperspectral imaging. Sensors 2020, 20, 2260. [Google Scholar] [CrossRef] [PubMed]
- Pu, R.L.; Gong, P. Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping. Remote Sens. Environ. 2004, 91, 212–224. [Google Scholar] [CrossRef]
- Gamon, J.A.; Serrano, L.; Surfus, J.S. The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Broge, N.H.; Mortensen, J.V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens. Environ. 2002, 81, 45–57. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Filella, I.; Serrano, L.; Serra, J.; Penuelas, J. Evaluation wheat nitrogen status with canopy reflectance index and discriminant analysis. Crop. Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Penuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjon, A.; Lopez-Lozano, R.; Miller, J.R.; Martin, P.; Cachorro, V.; Gonzalez, M.R.; De Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Gong, P.; Pu, R.; Heald, R.C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. Int. J. Remote Sens. 2002, 23, 1827–1850. [Google Scholar] [CrossRef]
- Guo, A.; Huang, W.; Ye, H.; Dong, Y.; Ma, H.; Ren, Y.; Ruan, C. Identification of wheat yellow rust using spectral and texture features of hyperspectral images. Remote Sens. 2020, 12, 1419. [Google Scholar] [CrossRef]
- Huang, L.; Li, T.; Ding, C.; Zhao, J.; Zhang, D.; Yang, G. Diagnosis of the severity of Fusarium head blight of wheat ears on the basis of image and spectral feature fusion. Sensors 2020, 20, 2887. [Google Scholar] [CrossRef]
- Han, Z.Y.; Zhu, X.C.; Fang, X.Y.; Wang, Z.Y.; Wang, L.; Zhao, G.X.; Jiang, Y.M. Hyperspectral estimation of apple tree canopy LAI based on SVM and RF regression. Spectrosc. Spectr. Anal. 2016, 36, 800–805. [Google Scholar] [CrossRef]
- Jiang, X.H.; Xue, H.R.; Zhang, L.N.; Gao, X.J.; Wu, G.D.; Bai, J. Nondestructive detection of chilled mutton freshness based on multi-label information fusion and adaptive BP neural network. Comput. Electron. Agric. 2018, 155, 371–377. [Google Scholar] [CrossRef]
- Chan, A.H.Y.; Barnes, C.; Swinfield, T.; Coomes, D.A. Monitoring ash dieback (Hymenoscyphus fraxineus) in British forests using hyperspectral remote sensing. Remote Sens. Ecol. Conserv. 2021, 7, 306–320. [Google Scholar] [CrossRef]
- Shen, X.; Cao, L.; Coops, N.C.; Fan, H.C.; Wu, X.Q.; Liu, H.; Wang, G.B.; Cao, F.L. Quantifying vertical profiles of biochemical traits for forest plantation species using advanced remote sensing approaches. Remote Sens. Environ. 2020, 250, 20. [Google Scholar] [CrossRef]
- Zhao, J.L.; Fang, Y.; Chu, G.M.; Yan, H.; Hu, L.; Huang, L.S. Identification of leaf-scale wheat powdery mildew (Blumeria graminisf. sp. Tritici) combining hyperspectral imaging and an SVM classifier. Plants 2020, 9, 936. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Huang, W.; Jing, Y.; Pignatti, S.; Laneve, G.; Dong, Y.; Ye, H.; Liu, L.; Guo, A.; Jiang, J. Identification of Fusarium head blight in winter wheat ears using continuous wavelet analysis. Sensors 2019, 20, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.-Y.; Chen, G.; Yin, X.; Hu, R.-J.; Gu, C.-Y.; Pan, Z.-G.; Zhou, X.-G.; Chen, Y. Integrating spectral and image data to detect Fusarium head blight of wheat. Comput. Electron. Agric. 2020, 175, 105588. [Google Scholar] [CrossRef]
- Guo, T.; Tan, C.W.; Li, Q.; Cui, G.X.; Li, H.G. Estimating leaf chlorophyll content in tobacco based on various canopy hyperspectral parameters. J. Ambient Intell. Humaniz. Comput. 2019, 10, 3239–3247. [Google Scholar] [CrossRef]
- Lu, J.; Huang, W.; Zhang, J. Quantitative identification of yellow rust and powdery mildew in winter wheat based on wavelet feature. Spectrosc. Spectr. Anal. 2016, 36, 1854–1858. [Google Scholar]
- Ma, H.; Huang, W.; Jing, Y.; Dong, Y.; Zhang, J.; Nie, C.; Tang, C.; Zhao, J.; Huang, L. Remote sensing monitoring of wheat powdery mildew based on AdaBoost model combining mRMR algorithm. Trans. CSAE 2017, 33, 162–169. [Google Scholar]
- Li, D.; Wang, X.; Zheng, H.B.; Zhou, K.; Yao, X.; Tian, Y.C.; Zhu, Y.; Cao, W.X.; Cheng, T. Estimation of area- and mass-based leaf nitrogen contents of wheat and rice crops from water-removed spectra using continuous wavelet analysis. Plant Methods 2018, 14, 20. [Google Scholar] [CrossRef]
- Zhang, J.C.; Wang, N.; Yuan, L.; Chen, F.N.; Wu, K.H. Discrimination of winter wheat disease and insect stresses using continuous wavelet features extracted from foliar spectral measurements. Biosyst. Eng. 2017, 162, 20–29. [Google Scholar] [CrossRef]
Category | Title | Definition | Description or Formula | Reference |
---|---|---|---|---|
Continuous removal transformed spectral features | Dep | The depth of the feature minimum relative to the hull | In the range 550–750 nm | [27,29] |
Area | The area of the absorption feature that is the product of DEP and WID | In the range 550–750 nm | [27,29] | |
Vegetation indices | PHRI | Physiological reflectance index | (R550 − R531)/(R531 + R570) | [30] |
TVI | Triangular vegetation index | 0.5 × 120(R750 − R550)–200(R670 − R550)] | [31] | |
ARI | Anthocyanin reflectance index | (R550)−1 − (R700)−1 | [32] | |
NBNDVI | Narrow-band normalized difference vegetation index | (R850 − R680)/(R850+R680) | [33] | |
NRI | Nitrogen reflectance index | (R570 − R670)/(R570 + R670) | [33] | |
PSRI | Plant senescence reflectance index | (R680 − R500)/R750 | [34] | |
NPCI | Normalized total pigment to chlorophyll a ratio index | (R680 − R430)/(R680 + R430) | [35] | |
GI | Greenness index | R554/R677 | [36] | |
Differential spectral features | Db | First-order maximal derivative inside blue edge | In the range 490–530 nm | [37] |
SDb | Summation of first-order derivatives inside blue edge | In the range 490–530 nm | [37] | |
SDy | Summation of first-order derivatives inside yellow edge | In the range 550–582 nm | [37] | |
SDr/SDb | The ratio of the SDr and SDb | SDr/SDb | [37] | |
(SDr − SDb)/ (SDr + SDb) | The normalized value of The SDr and SDb | (SDr − SDb)/(SDr + SDb) | [37] | |
(SDr − SDy)/ (SDr + SDy) | The normalized value of the SDr and SDy | (SDr − SDy)/(SDr + SDy) | [37] |
WFs | Scale | Wavelength (nm) | R | R2 | p-Value | Peculiarity |
---|---|---|---|---|---|---|
WF01 | 4 | 474 | 0.80 | 0.64 | 0.000 | Blue valley |
WF02 | 1 | 495 | 0.81 | 0.65 | 0.000 | Blue edge |
WF03 | 1 | 528 | −0.84 | 0.71 | 0.000 | Green peak |
WF04 | 2 | 582 | 0.84 | 0.71 | 0.000 | Yellow edge |
WF05 | 3 | 615 | 0.82 | 0.67 | 0.000 | Orange edge |
WF06 | 1 | 691 | 0.80 | 0.64 | 0.000 | Red edge |
WF07 | 1 | 738 | −0.81 | 0.65 | 0.000 | Red edge |
Sorting | SFs | R | R2 | p-Value |
---|---|---|---|---|
1 | PSRI | 0.81 | 0.65 | 0.000 |
2 | SDy | 0.80 | 0.64 | 0.000 |
3 | (SDr − SDy)/(SDr + SDy) | −0.80 | 0.64 | 0.000 |
4 | NRI | −0.79 | 0.63 | 0.000 |
5 | GI | −0.78 | 0.61 | 0.000 |
6 | SDb | −0.74 | 0.55 | 0.000 |
7 | Db | −0.74 | 0.54 | 0.000 |
8 | NPCI | 0.74 | 0.54 | 0.000 |
9 | Dep | 0.68 | 0.47 | 0.000 |
10 | (SDr − SDb)/(SDr + SDb) | 0.68 | 0.47 | 0.000 |
11 | ARI | 0.64 | 0.41 | 0.000 |
12 | PHRI | −0.62 | 0.38 | 0.000 |
13 | SDr/SDb | 0.57 | 0.32 | 0.000 |
14 | TVI | −0.47 | 0.22 | 0.000 |
15 | NBNDVI | −0.46 | 0.21 | 0.000 |
16 | Area | −0.34 | 0.12 | 0.000 |
Algorithm | Input Features | Predicted Results | |||||||
---|---|---|---|---|---|---|---|---|---|
Healthy | Mild | Severe | Se (%) | Sp (%) | OA (%) | Kappa | |||
RF | WFs | Healthy | 34 | 4 | 0 | 89.5 | 78.5 | 82.4 | 0.736 |
Mild | 4 | 26 | 8 | 68.4 | 90.0 | ||||
Severe | 0 | 3 | 29 | 90.6 | 78.9 | ||||
SFs | Healthy | 33 | 5 | 0 | 86.8 | 74.2 | 78.7 | 0.680 | |
Mild | 5 | 25 | 8 | 65.8 | 85.7 | ||||
Severe | 0 | 5 | 27 | 84.4 | 76.3 | ||||
BP | WFs | Healthy | 34 | 3 | 1 | 89.5 | 84.2 | 86.1 | 0.792 |
Mild | 4 | 29 | 5 | 76.3 | 85.7 | ||||
Severe | 0 | 2 | 30 | 93.8 | 82.8 | ||||
SFs | Healthy | 33 | 4 | 1 | 86.8 | 81.4 | 83.2 | 0.750 | |
Mild | 5 | 27 | 6 | 71.1 | 90.0 | ||||
Severe | 0 | 2 | 30 | 93.8 | 78.9 | ||||
PSO-SVM | WFs | Healthy | 35 | 2 | 1 | 92.1 | 94.3 | 93.5 | 0.903 |
Mild | 0 | 36 | 2 | 94.7 | 92.9 | ||||
Severe | 0 | 2 | 30 | 93.8 | 93.4 | ||||
SFs | Healthy | 35 | 2 | 1 | 92.1 | 81.4 | 85.2 | 0.778 | |
Mild | 5 | 27 | 6 | 71.1 | 92.9 | ||||
Severe | 0 | 2 | 30 | 93.8 | 81.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Wu, K.; Huang, W.; Dong, Y.; Ma, H.; Liu, Y.; Liu, L. Detection of Fusarium Head Blight in Wheat Ears Using Continuous Wavelet Analysis and PSO-SVM. Agriculture 2021, 11, 998. https://doi.org/10.3390/agriculture11100998
Huang L, Wu K, Huang W, Dong Y, Ma H, Liu Y, Liu L. Detection of Fusarium Head Blight in Wheat Ears Using Continuous Wavelet Analysis and PSO-SVM. Agriculture. 2021; 11(10):998. https://doi.org/10.3390/agriculture11100998
Chicago/Turabian StyleHuang, Linsheng, Kang Wu, Wenjiang Huang, Yingying Dong, Huiqin Ma, Yong Liu, and Linyi Liu. 2021. "Detection of Fusarium Head Blight in Wheat Ears Using Continuous Wavelet Analysis and PSO-SVM" Agriculture 11, no. 10: 998. https://doi.org/10.3390/agriculture11100998
APA StyleHuang, L., Wu, K., Huang, W., Dong, Y., Ma, H., Liu, Y., & Liu, L. (2021). Detection of Fusarium Head Blight in Wheat Ears Using Continuous Wavelet Analysis and PSO-SVM. Agriculture, 11(10), 998. https://doi.org/10.3390/agriculture11100998