Performance Optimal PI controller Tuning Based on Integrating Plus Time Delay Models
<p>Consider PI control of the FOPTD process model, <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>s</mi> </mrow> </msup> <mi>s</mi> </mfrac> </mrow> </semantics> </math>. The figure shows the robustness <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>s</mi> </msub> </semantics> </math> as a function of the MP parameter <math display="inline"> <semantics> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> </semantics> </math>, given constant robustness, for the interval <math display="inline"> <semantics> <mrow> <mn>1.5</mn> <mo>≤</mo> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>≤</mo> <mn>4.0</mn> </mrow> </semantics> </math>.</p> "> Figure 2
<p>Consider a control feedback system where the plant model is described by the process model, <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math>, PI controller, <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mi>s</mi> </mrow> <mrow> <msub> <mi>T</mi> <mi>i</mi> </msub> <mi>s</mi> </mrow> </mfrac> </mrow> </semantics> </math>, and the disturbance model, <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mi>v</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math>, where disturbance <span class="html-italic">v</span> at the input when, <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mi>v</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>H</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math>, and at the output when, <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mi>v</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>. Input <span class="html-italic">u</span>, output <span class="html-italic">y</span> and reference <span class="html-italic">r</span>.</p> "> Figure 3
<p>Reference example (Example 2). Consider PI control of the IPTD model, <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>s</mi> </mrow> </msup> <mi>s</mi> </mfrac> </mrow> </semantics> </math>. The figure illustrates the trade-off between the Pareto performance objective <span class="html-italic">J</span> (Equation (<a href="#FD41-algorithms-11-00086" class="html-disp-formula">41</a>)) and robustness <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>s</mi> </msub> </semantics> </math> (Equation (<a href="#FD10-algorithms-11-00086" class="html-disp-formula">10</a>)). It illustrates the MP parameters <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics> </math> for Algorithm 1 proposed in <a href="#sec4-algorithms-11-00086" class="html-sec">Section 4</a>. SIMC is added for comparison.</p> "> Figure 4
<p>Consider PI control of an IPTD process, <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>k</mi> <mfrac> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>τ</mi> <mi>s</mi> </mrow> </msup> <mi>s</mi> </mfrac> </mrow> </semantics> </math> with process parameters <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math>. PI controller <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mi>s</mi> </mrow> <mrow> <msub> <mi>T</mi> <mi>i</mi> </msub> <mi>s</mi> </mrow> </mfrac> </mrow> </semantics> </math> with settings as in Algorithm 1. The figure shows the indices <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>s</mi> </msub> </semantics> </math>, <math display="inline"> <semantics> <msub> <mrow> <mi>ITAE</mi> </mrow> <mrow> <mi>v</mi> <mi>u</mi> </mrow> </msub> </semantics> </math>, <math display="inline"> <semantics> <msub> <mrow> <mi>IAE</mi> </mrow> <mi>r</mi> </msub> </semantics> </math>, <math display="inline"> <semantics> <msub> <mrow> <mi>ITAE</mi> </mrow> <mi>r</mi> </msub> </semantics> </math>, <math display="inline"> <semantics> <msub> <mrow> <mi>IAE</mi> </mrow> <mi>r</mi> </msub> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>TV</mi> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>ISE</mi> </mrow> </semantics> </math>, <math display="inline"> <semantics> <msub> <mrow> <mi>ITAE</mi> </mrow> <mrow> <mi>v</mi> <mi>u</mi> </mrow> </msub> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>IAE</mi> </mrow> </semantics> </math> as a function of varying the MP parameter <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>∈</mo> <mrow> <mo>[</mo> <mn>1.5</mn> <mo>,</mo> <mn>4.0</mn> <mo>]</mo> </mrow> </mrow> </semantics> </math> and with prescribed RTDE <math display="inline"> <semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.6</mn> </mrow> </semantics> </math>.</p> "> Figure 5
<p>Example 2 (Reference example). Consider PI control of an IPTD process model, <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>s</mi> </mrow> </msup> <mi>s</mi> </mfrac> </mrow> </semantics> </math>. The figure illustrates the time-domain responses, given a prescribed robustness <math display="inline"> <semantics> <mrow> <msub> <mi>M</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>1.59</mn> </mrow> </semantics> </math>, of the following methods: the PO PI, SIMC with prescribed closed loop time constant <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>1.24</mn> <mspace width="0.166667em"/> <mi>τ</mi> </mrow> </semantics> </math> and Algorithm 1 where the MP parameter <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics> </math> (proposed in <a href="#sec4-algorithms-11-00086" class="html-sec">Section 4</a>) and RTDE <math display="inline"> <semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.79</mn> </mrow> </semantics> </math>. An output disturbance unit step is presented at time <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> and an input disturbance unit step at time <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics> </math>.</p> "> Figure 6
<p>Example 3. Consider PI control of the FOPTD process model, <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>K</mi> <mfrac> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>τ</mi> <mi>s</mi> </mrow> </msup> <mrow> <mi>T</mi> <mi>s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </semantics> </math>, where <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>5.7</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>60</mn> </mrow> </semantics> </math>. The figure shows the trade-off curves with the Pareto performance objective J (Equation (<a href="#FD41-algorithms-11-00086" class="html-disp-formula">41</a>)) and robustness <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>s</mi> </msub> </semantics> </math> (Equation (<a href="#FD10-algorithms-11-00086" class="html-disp-formula">10</a>)). It illustrates the MP parameters <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics> </math> for Algorithm 1 (proposed in <a href="#sec4-algorithms-11-00086" class="html-sec">Section 4</a>). SIMC with set-point time constant <math display="inline"> <semantics> <msub> <mi>T</mi> <mi>c</mi> </msub> </semantics> </math> is added for comparison.</p> "> Figure 7
<p>Example 3. Consider PI control of the FOPTD process model, <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>K</mi> <mfrac> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mi>τ</mi> <mi>s</mi> </mrow> </msup> <mrow> <mi>T</mi> <mi>s</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </semantics> </math>, where <math display="inline"> <semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>5.7</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>60</mn> </mrow> </semantics> </math>. The figure illustrates the time-domain responses, given a prescribed robustness <math display="inline"> <semantics> <mrow> <msub> <mi>M</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>1.59</mn> </mrow> </semantics> </math>, of the following methods: the PO PI, SIMC with prescribed closed loop time constant <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>1.10</mn> <mspace width="0.166667em"/> <mi>τ</mi> </mrow> </semantics> </math>, and Algorithm 1 where the MP parameter <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics> </math> (proposed in <a href="#sec4-algorithms-11-00086" class="html-sec">Section 4</a>) and RTDE <math display="inline"> <semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.56</mn> </mrow> </semantics> </math>. An output disturbance unit step is presented at time <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> and an input disturbance unit step at time <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>140</mn> </mrow> </semantics> </math>.</p> "> Figure 8
<p>Example 4. Consider PI control of the higher order process model (Equation (<a href="#FD47-algorithms-11-00086" class="html-disp-formula">47</a>)). The figure illustrates the trade-off curves with the Pareto performance objective J (Equation (<a href="#FD41-algorithms-11-00086" class="html-disp-formula">41</a>)) and robustness <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>s</mi> </msub> </semantics> </math> (Equation (<a href="#FD10-algorithms-11-00086" class="html-disp-formula">10</a>)). It shows the MP parameter settings <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics> </math> for Algorithm 1 proposed in <a href="#sec4-algorithms-11-00086" class="html-sec">Section 4</a>. SIMC is added for comparison.</p> "> Figure 9
<p>Example 4. Consider PI control of the higher order process model (Equation (<a href="#FD47-algorithms-11-00086" class="html-disp-formula">47</a>)). The figure illustrates the time-domain responses, given a prescribed robustness <math display="inline"> <semantics> <mrow> <msub> <mi>M</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>1.59</mn> </mrow> </semantics> </math>, of the following methods: the PO PI controller vs. SIMC with closed loop time constant <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>1.33</mn> <mspace width="0.166667em"/> <mi>τ</mi> </mrow> </semantics> </math>, and PRC + Algorithm 1 where the MP parameter setting <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics> </math> (proposed in <a href="#sec4-algorithms-11-00086" class="html-sec">Section 4</a>) and RTDE <math display="inline"> <semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>1.63</mn> </mrow> </semantics> </math>. An output disturbance unit step is presented at time <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> and an input disturbance unit step at time <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>35</mn> </mrow> </semantics> </math>.</p> "> Figure 10
<p>Example 5. Consider PI control of the higher order underdamped process model (Equation (<a href="#FD48-algorithms-11-00086" class="html-disp-formula">48</a>)). The figure shows the trade-off curves with the Pareto performance objective J (Equation (<a href="#FD41-algorithms-11-00086" class="html-disp-formula">41</a>)) and robustness <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>s</mi> </msub> </semantics> </math> (Equation (<a href="#FD10-algorithms-11-00086" class="html-disp-formula">10</a>)). It illustrates the PO PI controllers and PRC + Algorithm 1 variants with MP parameter settings <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>4.0</mn> </mrow> </semantics> </math>, <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics> </math>.</p> "> Figure 11
<p>Example 5. Consider PI control of the higher order underdamped process model (Equation (<a href="#FD48-algorithms-11-00086" class="html-disp-formula">48</a>)). The figure illustrates the time-domain responses, given a prescribed robustness <math display="inline"> <semantics> <mrow> <msub> <mi>M</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>1.59</mn> </mrow> </semantics> </math>, of following methods: the PO PI and the PRC + Algorithm 1 where the MP parameter setting <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.5</mn> </mrow> </semantics> </math> (proposed in <a href="#sec4-algorithms-11-00086" class="html-sec">Section 4</a>) and RTDE <math display="inline"> <semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mn>2.20</mn> </mrow> </semantics> </math>. An output disturbance unit step is presented at time <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> and an input disturbance unit step at time <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics> </math>.</p> "> Figure 12
<p>Example 6. PI control of the higher order underdamped process model (Equation (<a href="#FD48-algorithms-11-00086" class="html-disp-formula">48</a>)). The figure illustrates the trade-off curves with the Pareto performance objective J (Equation (<a href="#FD41-algorithms-11-00086" class="html-disp-formula">41</a>)) and robustness <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>s</mi> </msub> </semantics> </math> (Equation (<a href="#FD10-algorithms-11-00086" class="html-disp-formula">10</a>)). It shows the PO PI controllers with robustness <math display="inline"> <semantics> <msub> <mi>M</mi> <mi>s</mi> </msub> </semantics> </math> and the ζ-PRC + Algorithm 1 variant where the RTDE <math display="inline"> <semantics> <mrow> <mi>δ</mi> <mo>=</mo> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics> </math> is fixed and the main tuning parameter is ζ.</p> "> Figure 13
<p>Example 6. PI control of the higher order underdamped process model (Equation (<a href="#FD48-algorithms-11-00086" class="html-disp-formula">48</a>)). The figure illustrates the time-domain responses, given a prescribed robustness <math display="inline"> <semantics> <mrow> <msub> <mi>M</mi> <mi>s</mi> </msub> <mo>=</mo> <mn>1.59</mn> </mrow> </semantics> </math>, for the following methods: the PO PI and the ζ-PRC + Algorithm 1 variant with MP parameter and MTDE settings <math display="inline"> <semantics> <mrow> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mo>=</mo> <mi>δ</mi> <mo>=</mo> <mn>2.7</mn> </mrow> </semantics> </math>, and tuning parameter <math display="inline"> <semantics> <mrow> <mi>ζ</mi> <mo>=</mo> <mn>0.74</mn> </mrow> </semantics> </math>. An output disturbance unit step is presented at time <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics> </math> and an input disturbance unit step at time <math display="inline"> <semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>80</mn> </mrow> </semantics> </math>.</p> ">
Abstract
:1. Introduction
- In the instance of a small or zero time delay , we propose a variant in which the Maximum Time Delay Error (MTDE) is the tuning parameter (see Section 3.2).
- Two optimal settings for the MP parameter are presented in Section 4. These are optimal in the sense that they minimise a Pareto performance objective (i.e., integrated absolute error for combined step changes in output and input disturbances) on two different aspects. One additional MP parameter is deduced from approximating the time delay with a (2, 1) Pade approximation in Section 3.3.
- Additional MP parameter settings are suggested for minimising a variety of given indices.
- The presented method (including variants of this) is demonstrated and compared to the Pareto-Optimal (PO) and SIMC (when possible) tuned PI controllers on various motivated (possible) higher order process model examples in Section 5.
2. Preliminary Theory
2.1. Definitions
- evaluates the performance in case of a step input disturbance (), (default), with the reference, .
- evaluates the performance in case of a step output disturbance (), (default), with the reference, .
- evaluates the performance in case of a reference unit step, , with the disturbance, .
2.2. Lag-Dominant Systems
2.3. SIMC Tuning Rules
3. Tuning for Maximum Time Delay Error
3.1. Integrator Plus Time Delay Process
3.2. Pure Integrating Process
3.3. Using a () Pade Approximation
4. Optimal Performance Settings
5. Simulation Examples
6. Discussion
Remarks to Section 3
7. Concluding Remarks
- Two optimal settings for the MP parameter are presented in Section 4. These are optimal in the sense that they minimise the main performance objective on two different aspects. Interestingly, one of the MP parameters may (arguably) be deduced from approximating the time delay with a (2, 1) Pade approximation in Section 3.3.
- In the case of a small or zero time delay , we propose a variant in which the MTDE is the tuning parameter.
- Note that for an IPTD model, the SIMC tuned PI controllers are seen far from optimal, i.e., PO (or (almost) equivalently, Algorithm 1 with the MP parameter setting as ). See Section 4.
- The presented method (and variants of this) is successfully demonstrated and compared to the SIMC and PO PI controllers on numerous motivated process model examples in Section 5.
- Note that, for the higher order process models in Examples 4 and 5, we use the PRC model reduction technique, which is generally easier to apply than the half-rule technique proposed in [12]. The half-rule technique is not compatible with handling complex poles.
- Some surprisingly optimal results are documented for Example 6, where a tuning method based on varying the gain velocity, , (, is the ZN unit reaction rate), i.e., the tuning parameter is . Note that setting the RTDE (i.e., an ad hoc choice) equal a constant is advisable.
- Note that the results in Section 5 are based on the original (possible) higher order models. The approximated IPTD models are only used for the PI controller design.
Author Contributions
Conflicts of Interest
Abbreviations
PI | Proportional Integrating |
IPTD | Integrator Plus Time Delay |
FOPTD | First Order Plus Time Delay |
ZN | Ziegler–Nichols |
IAE | Integrated Absolute Error |
ITAE | Integrated Time-weighted Absolute Error |
ISE | Integrated Square Error |
ITSE | Integrated Time-weighted Square Error |
TV | Total input Value |
MP | Method Product |
IMC | Internal Model Control |
SIMC | Simple/Skogestad Internal Model Control |
GM | Gain Margin |
PM | Phase Margin |
DM | Delay Margin |
MTDE | Maximum Time Delay Error |
PO | Pareto-Optimal |
RTDE | Relative Time Delay Error |
References
- Di Ruscio, D. On Tuning PI Controllers for Integrating Plus Time Delay Systems. Model. Identif. Control 2010, 31, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Di Ruscio, D. PI Controller Tuning Based on Integrating Plus Time Delay Models: Performance Optimal Tuning. In Proceedings of the IASTED Control and Applications Conference (CA2012), Crete, Greece, 18–21 June 2012. [Google Scholar]
- Arbogast, J.E.; Cooper, D.J. Extension of IMC tuning correlations for non-self regulating (integrating) processes. ISA Trans. 2007, 46, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, V.; Vilanova, R. Model Reference Robust Tuning of 2Dof PI Controllers for Integrating Controlled Processes. In Proceedings of the 2012 20th Mediterranean Conference on Control & Automation (MED), Barcelona, Spain, 3–6 July 2012. [Google Scholar]
- Antonio Visioli, Q.Z. Control of Integral Processes with Dead Time; Springer-Verlag: London, UK, 2011. [Google Scholar]
- Tyreus, B.D.; Luyben, W.L. Tuning PI Controllers for Integrator/Dead Time Processes. Ind. Eng. Chem. Res. 1992, 31, 2625–2628. [Google Scholar] [CrossRef]
- Chien, I.L.; Fruehauf, P.S. Consider IMC Tuning to Improve Controller Performance. Chem. Eng. Prog. 1990, 86, 33–41. [Google Scholar]
- Skogestad, S. Probably the best simple PID tuning rules in the world. In Proceedings of the AIChE Annual Meeting, Reno, Nevada, 6 November 2001. [Google Scholar]
- Ziegler, J. “On-the-job” adjustments of air operated recorder-controllers. Instruments 1941, 16, 394–397. [Google Scholar]
- Ziegler, J.; Nichols, N.B. Optimum Settings for Automatic Controllers. Trans. Am. Soc. Mech. Eng. 1942, 64, 759–768. [Google Scholar] [CrossRef]
- Ziegler, J.; Nichols, N.B. Process lags in automatic control circuits. Trans. Am. Soc. Mech. Eng. 1943, 65, 433–444. [Google Scholar]
- Skogestad, S. Simple analytic rules for model reduction and PID controller tuning. J. Process Control 2003, 13, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Skogestad, S. Simple analytic rules for model reduction and PID controller tuning. Model. Identif. Control 2004, 25, 85–120. [Google Scholar] [CrossRef] [Green Version]
- Åström, K.; Hägglund, T. PID Controllers: Theory, Design, and Tuning; Instrument Society of America: Research Triangle Park, NC, USA, 1995. [Google Scholar]
- Seborg, D.; Edgar, T.F.; Mellichamp, D.A. Process Dynamics and Ciontrol; John Wiley and Sons: Hoboken, NJ, USA, 1989. [Google Scholar]
- Grimholt, C.; Skogestad, S. Optimal PI-Control and Verification of the SIMC Tuning Rule. IFAC Proc. Vol. 2012, 45, 11–22. [Google Scholar] [CrossRef]
- Grimholt, C.; Skogestad, S. Optimal PID-Control on First Order Plus Time Delay Systems & Verification of the SIMC Rules. IFAC Proc. Vol. 2013, 46, 265–270. [Google Scholar] [CrossRef]
- Skogestad, S.; Grimholt, C. The SIMC Method for Smooth PID Controller Tuning; Springer: London, UK, 2012. [Google Scholar]
- Haugen, F. Comparing PI Tuning Methods in a Real Benchmark Temperature Control System. Model. Identif. Control 2010, 31, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Luyben, W. Process Modeling, Simulation, and Control for Chemical Engineers; Chemical engineering series; McGraw-Hill: New York, NY, USA, 1990. [Google Scholar]
- Abbasi, I.; Ali, S.; Ovinis, M.; Naeem, W. U-Model Based Controller Design for an Unmanned Free Swimming Submersible (UFSS) Vehicle Under Hydrodynamic Disturbances; NISCAIR-CSIR: New Delhi, Delhi, India, 2017; Volume 46, pp. 742–748. [Google Scholar]
0 | 0.1 | 0.25 | 0.5 | 0.75 | 1 | |
---|---|---|---|---|---|---|
2.4 | 2.5 | 2.6 | 2.7 | 3.7 | ∞ |
Method | = 2.5 | = 2.7 | SIMC |
---|---|---|---|
/e-4 | 0.02 | 1.56 | 592.75 |
2.0 | 2.4 | 2.4 | 2.6 | 4.0 | 2.7 | 2.5 |
k | |||||
---|---|---|---|---|---|
1 | 0.1 | 2.0 | 2.45 | 2.45 | 2.45 |
1 | 0.3 | 2.0 | 2.4 | 2.45 | 2.4 |
1 | 0.5 | 2.0 | 2.4 | 2.45 | 2.4 |
1 | 1 | 2.0 | 2.4 | 2.4 | 2.4 |
1 | 2 | 2.0 | 2.4 | 2.4 | 2.4 |
1 | 4 | 2.0 | 2.4 | 2.4 | 2.4 |
0.1 | 1 | 2.0 | 2.4 | 2.5 | 2.4 |
0.1 | 2 | 2.0 | 2.4 | 2.45 | 2.4 |
0.1 | 4 | 2.0 | 2.4 | 2.45 | 2.4 |
k | ||||||
---|---|---|---|---|---|---|
1.0 | 0.1 | 2.7 | 3.4 | 4.0 | 4.0 | 4.0 |
1.0 | 0.3 | 2.7 | 3.2 | 4.0 | 4.0 | 4.0 |
1.0 | 0.5 | 2.7 | 3.1 | 3.5 | 4.0 | 4.0 |
1.0 | 1.0 | 2.6 | 3.1 | 3.2 | 4.0 | 4.0 |
1.0 | 2.0 | 2.6 | 3.0 | 3.1 | 4.0 | 4.0 |
1.0 | 4.0 | 2.6 | 3.0 | 3.1 | 4.0 | 4.0 |
0.1 | 1.0 | 2.6 | 3.9 | 4.0 | 4.0 | 4.0 |
0.1 | 2.0 | 2.6 | 3.2 | 4.0 | 4.0 | 4.0 |
0.1 | 4.0 | 2.6 | 3.1 | 3.6 | 4.0 | 4.0 |
Alg. 1 | SIMC | PO PI | |
---|---|---|---|
0.41 | 0.45 | 0.41 | |
6.14 | 8.96 | 6.28 | |
4.39 | 4.24 | 4.37 | |
15.26 | 20.06 | 15.39 | |
J | 1.52 | 1.64 | 1.52 |
TV | 3.33 | 3.12 | 3.31 |
GM | 3.56 | 3.34 | 3.54 |
PM | 44.57 | 50.02 | 44.94 |
DM | 1.79 | 1.90 | 1.80 |
1.59 | 1.59 | 1.59 |
Method | = 2.5 | = 2.7 | SIMC |
---|---|---|---|
/e-2 | 0.57 | 1.08 | 6.96 |
Alg. 1 | SIMC | PO PI | |
---|---|---|---|
1.17 | 1.25 | 1.12 | |
22.55 | 33.60 | 19.47 | |
15.13 | 13.53 | 15.70 | |
17.73 | 25.16 | 15.89 | |
J | 1.39 | 1.52 | 1.37 |
TV | 3.94 | 3.70 | 4.05 |
GM | 3.36 | 3.22 | 3.46 |
PM | 50.49 | 56.21 | 47.83 |
DM | 7.51 | 8.08 | 7.26 |
1.59 | 1.59 | 1.59 |
Method | = 2.5 | = 2.7 | SIMC |
---|---|---|---|
/e-3 | 0.7 | 0.3 | 6.2 |
Alg. 1 | SIMC | PO PI | |
---|---|---|---|
0.78 | 0.91 | 0.85 | |
5.35 | 7.04 | 6.06 | |
3.62 | 3.35 | 3.48 | |
6.83 | 7.74 | 7.14 | |
J | 1.41 | 1.41 | 1.39 |
TV | 3.77 | 3.77 | 3.77 |
GM | 6.74 | 6.13 | 6.39 |
PM | 43.63 | 46.74 | 45.19 |
DM | 1.54 | 1.49 | 1.51 |
1.59 | 1.59 | 1.59 |
2.5 | 2.7 | 4 | |
---|---|---|---|
/e-2 | 0.84 | 1.05 | 6.13 |
PRC + Alg. 1 | PO PI | |
---|---|---|
−1.42 | −1.70 | |
12.18 | 14.90 | |
6.41 | 5.88 | |
8.59 | 8.72 | |
J | 1.04 | 1.00 |
TV | 4.62 | 5.06 |
GM | 13.80 | 11.84 |
PM | 43.90 | 44.20 |
DM | 3.03 | 2.74 |
1.59 | 1.59 |
Variant | PRC | -PRC |
---|---|---|
/e-4 | 83.6 | 0.02 |
-Alg. 1 | PO PI | |
---|---|---|
−1.70 | −1.70 | |
14.82 | 14.90 | |
5.88 | 5.88 | |
8.69 | 8.72 | |
J | 1.00 | 1.00 |
TV | 5.06 | 5.06 |
GM | 11.85 | 11.84 |
PM | 44.15 | 44.20 |
DM | 2.74 | 2.74 |
1.59 | 1.59 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dalen, C.; Di Ruscio, D. Performance Optimal PI controller Tuning Based on Integrating Plus Time Delay Models. Algorithms 2018, 11, 86. https://doi.org/10.3390/a11060086
Dalen C, Di Ruscio D. Performance Optimal PI controller Tuning Based on Integrating Plus Time Delay Models. Algorithms. 2018; 11(6):86. https://doi.org/10.3390/a11060086
Chicago/Turabian StyleDalen, Christer, and David Di Ruscio. 2018. "Performance Optimal PI controller Tuning Based on Integrating Plus Time Delay Models" Algorithms 11, no. 6: 86. https://doi.org/10.3390/a11060086
APA StyleDalen, C., & Di Ruscio, D. (2018). Performance Optimal PI controller Tuning Based on Integrating Plus Time Delay Models. Algorithms, 11(6), 86. https://doi.org/10.3390/a11060086