MagnetoPlasmonic Waves/HOMO-LUMO Free π-Electron Transitions Coupling in Organic Macrocycles and Their Effect in Sensing Applications
<p>Molecular structures of (<b>a</b>) TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> terbium phthalocyanine derivative and (<b>b</b>) bis porphyrin derivative CoCoPo<sub>2</sub> used as active molecules.</p> "> Figure 2
<p>Π-area per molecule isotherm curves for the floating film of TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> (panel <b>a</b>) and CoCoPo<sub>2</sub> (panel <b>b</b>).</p> "> Figure 3
<p>BAM images of TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> recorded at different surface pressure values, 4 mN·m<sup>−1</sup> (box <b>a</b>), 7.5, 18 and 29 mN·m<sup>−1</sup> (boxes <b>b</b>–<b>d</b>). Width of images is 430 μm.</p> "> Figure 4
<p>BAM images of CoCoPo2 recorded at different surface pressure values, 5 mN·m<sup>−1</sup> (box <b>a</b>), 12, 26 and 34 mN·m<sup>−1</sup> (boxes <b>b</b>–<b>d</b>). Width of images is 430 μm.</p> "> Figure 5
<p>(<b>a</b>) AFM image of the CoCoPo<sub>2</sub> and (<b>b</b>) TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> L-S layers deposited onto MOSPR transducers.</p> "> Figure 6
<p>UV-VIS electronic absorption spectra of the TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> macrocycle as floating film, in chloroform solution and in L-S thin film form deposited onto silica glass substrate.</p> "> Figure 7
<p>UV-VIS electronic absorption spectra of the CoCoPo<sub>2</sub> macrocycle as floating film, in chloroform solution and in L-S thin film form deposited onto silica glass substrate.</p> "> Figure 8
<p>UV-VIS electronic absorption spectra comparison of TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> and CoCoPo<sub>2</sub> monolayer deposited onto silica glass substrate. The position of the transducers surface plasmon resonance energy coupling with electronic transition of the TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> is evidenced.</p> "> Figure 9
<p>(<b>a</b>,<b>b</b>) Experimental reflectivity curves (SPR) vs. angle of incidence of TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> and CoCoPo<sub>2</sub> macrocycles. (<b>c</b>) Magneto-plasmonic curves (TMOKE signal) of Au/Co/Au transducers covered by 5 monolayers (5ML) of TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> and CoCoPo<sub>2</sub>, respectivley.</p> "> Figure 10
<p>(<b>a</b>) 1/|TMOKE| signal vs. incidence angle of the Au/Co/Au transducer alone compared with the same signals acquired in the presence of a single monolayer of CoCoPo<sub>2</sub> and TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> macrocycles. The coloured circles represent the investigating laser size (<0.5 mm). (<b>b</b>) 1/|TMOKE| signals vs. incidence angle in Kretschmann configuration for CoCoPo<sub>2</sub> and TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> monolayers interacting with butylamine vapours, respectively.</p> "> Figure 10 Cont.
<p>(<b>a</b>) 1/|TMOKE| signal vs. incidence angle of the Au/Co/Au transducer alone compared with the same signals acquired in the presence of a single monolayer of CoCoPo<sub>2</sub> and TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> macrocycles. The coloured circles represent the investigating laser size (<0.5 mm). (<b>b</b>) 1/|TMOKE| signals vs. incidence angle in Kretschmann configuration for CoCoPo<sub>2</sub> and TbPc<sub>2</sub>(OC<sub>11</sub>H<sub>21</sub>)<sub>8</sub> monolayers interacting with butylamine vapours, respectively.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Magneto-Optical Transducers
2.2. Preparation of the Magneto-Optical Transducers
2.3. Morphological and Optical Characterization
2.4. Plasmonic and Magneto-Plasmonic Characterization in Dry-Air and in Controlled Atmosphere
3. Results and Discussion
3.1. Morphological Characterization
3.2. Optical and Magneto-Plasmonic Characterization and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sonntag, M.D.; Klingsporn, J.M.; Zrimsek, A.B.; Sharma, B.; Ruvuna, L.K.; Van Duyne, R.P. Molecular plasmonics for nanoscale spectroscopy. Chem. Soc. Rev. 2014, 43, 1230. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.B.; Kiraly, B.; Weiss, P.S.; Huang, T.J. Molecular plasmonics for biology and nanomedicine. Nanomedicine 2012, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csaki, A.; Schneider, T.; Wirth, J.; Jahr, N.; Steinbrück, A.; Stranik, O.; Garwe, F.; Müller, R.; Fritzsche, W. Molecular plasmonics: Light meets molecules at the nanoscale. Phil. Trans. R. Soc. A 2011, 369, 3483–3496. [Google Scholar] [CrossRef] [PubMed]
- Manera, M.G.; Ferreiro-Vila, E.; García-Martín, J.M.; Cebollada, A.; García-Martín, A.; Giancane, G.; Valli, L.; Rella, R. Enhanced magneto-optical SPR platform for amine sensing based on Zn porphyrin dimers. Sens. Actuators B Chem. 2013, 182, 232–238. [Google Scholar] [CrossRef]
- Kaur, G.; Lewis, J.S.; van Oijen, A.M. Shining a spotlight on DNA: Single-molecule methods to visualize DNA. Molecules 2019, 24, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 2010, 28, 595–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlov, A.M.; Gabriel, S.A.; Sukhorukov, G.B.; Gould, D.J. Improved and targeted delivery of bioactive molecules to cells with magnetic layer-by-layer assembled microcapsules. Nanoscale 2015, 7, 9686–9693. [Google Scholar] [CrossRef]
- Baselt, D.R.; Lee, G.U.; Natesan, M.; Metzger, S.W.; Sheehan, P.E.; Colton, R.J. A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 1998, 13, 731–739. [Google Scholar] [CrossRef]
- Buznikov, N.A.; Safronov, A.P.; Orue, I.; Golubeva, E.V.; Lepalovskij, V.N.; Svalov, A.V.; Chlenova, A.; Kurlyandskaya, G.V. Modelling of magnetoimpedance response of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection. Biosens. Bioelectron. 2018, 117, 366–372. [Google Scholar] [CrossRef]
- Rodriguez-Mendez, M.; de Saja, J.A. Chapter 3, Molecular materials for gas sensors and sensor arrays. In Advanced Nanomaterials for Inexpensive Gas Microsensors; Synthesis, Integration and Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 37–54. [Google Scholar] [CrossRef]
- Dong, Z.; Kong, X.; Wu, Y.; Zhang, J.; Chen, Y. High-sensitive room-temperature NO2 sensor based on a soluble n-typephthalocyanine semiconductor. Inorg. Chem. Commun. 2017, 77, 18–22. [Google Scholar] [CrossRef]
- Çapan, R. Porphyrin langmuir-blodgett thin film for organic vapor detection. J. Phys. Sci. Appl. 2019, 9, 15–24. [Google Scholar]
- Castillero, P.; Roales, J.; Lopes-Costa, T.; Sánchez-Valencia, J.R.; Barranco, A.; González-Elipe, A.R.; Pedrosa, J.M. Optical gas sensing of ammonia and amines basedon protonated porphyrin/TiO2 Composite thin films. Sensors 2017, 17, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krichevsky, D.; Zasedatelev, A.; Tolbin, A.Y.; Luchkin, S.; Karpo, A.B.; Krasovskii, V.I.; Tomilova, L.G. Highly transparent low-symmetry zinc phthalocyanine-based monolayersfor NO2 gas detection. Thin Solid Films 2017, 642, 295–302296. [Google Scholar] [CrossRef]
- Ali, A.M.; Said, D.A.; Khayyat, M.; Boustimi, M.; Seoudi, R. Improving the efficiency of the organic solar cell (CuPc/C60) via PEDOT: PSS as a photoconductor layer doped by silver nanoparticles. Results Phys. 2020, 16, 102819. [Google Scholar] [CrossRef]
- Gao, H.H.; Sun, Y.; Li, S.; Ke, X.; Cai, Y.; Wan, X.; Zhang, H.; Li, C.; Chen, Y. An all small molecule organic solar cell based on a porphyrin donor and a non-fullerene acceptor with complementary and broad absorption. Dye. Pigment. 2020, 176, 108250. [Google Scholar] [CrossRef]
- Matsuo, Y.; Ogumi, K.; Jeon, I.; Wang, H.; Nakagawa, T. Progress in porphyrin- and phthalocyanine-containing perovskite solar cells. RSC Adv. 2020, 10, 32678–32689. [Google Scholar] [CrossRef]
- Avossa, J.; Paolesse, R.; Di Natale, C.; Zampetti, E.; Bertoni, G.; De Cesare, F.; Scarascia-Mugnozza, G.; Macagnano, A. Electrospinning of polystyrene/polyhydroxybutyrate nanofibers doped with porphyrin and graphene for chemiresistor gas sensors. Nanomaterials 2019, 9, 280. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Zhang, Y.; Wang, H.; Dai, F.; Yang, G.; Chen, Y. A phthalocyanine sensor array based on sensitivity and current changes for highly sensitive identification of three toxic gases at ppb levels. New J. Chem. 2020, 44, 13240–13248. [Google Scholar] [CrossRef]
- Klyamer, D.; Bonegardt, D.; Basova, T. Fluoro-substituted metal phthalocyanines for active layers of chemical sensors. Chemosensors 2021, 9, 133. [Google Scholar] [CrossRef]
- Acikbas, Y.; Erdogan, M.; Capan, R.; Ozkaya, C.; Baygu, Y.; Kabay, N.; Gok, Y. Preparation of Zinc (II) phthalocyanine-based LB thin film: Experimental characterization, the determination of some optical properties and the investigation of the optical sensing ability. Optik 2021, 245, 167661. [Google Scholar] [CrossRef]
- Kharitonova, N.V.; Maiorova, L.A.; Koifman, O.I. Aggregation behavior of unsubstituted magnesium porphyrazine in monolayers at air-water interface and in Langmuir-Schaefer films. J. Porphyr. Phthalocyanines 2018, 22, 509–520. [Google Scholar] [CrossRef]
- Kazak, A.; Marchenkova, M.; Smirnova, A.; Dubinina, T.; Seregin, A.; Rogachev, A.; Usoltseva, N. Thin-film materials based on phthalocyanine derivatives: Structure and physico-chemical properties. ITM Web Conf. 2019, 30, 08006. [Google Scholar] [CrossRef]
- Abdulla, S.; Pullithadathil, B. Unidirectional langmuir–blodgett-mediated alignment of polyaniline-functionalized multiwalled carbon nanotubes for NH3 gas sensor applications. Langmuir 2020, 36, 11618–11628. [Google Scholar] [CrossRef] [PubMed]
- Manera, M.G.; Rella, R. Improved gas sensing performances in SPR sensors by transducers activation. Sens. Actuators B Chem. 2013, 179, 175–186. [Google Scholar] [CrossRef]
- Wang, L.; Guo, S.; Zhou, K.; Ma, W. Control of the molecular orientation in small molecule-based organic photovoltaics. Sustain. Energy Fuels 2020, 4, 4934–4955. [Google Scholar] [CrossRef]
- Uzurano, G.; Yabuuchi, Y.; Ishiura, R.; Yoneya, M.; Nagano, S.; Kajii, H.; Fujii, A.; Ozaki, M. Molecular orientation, and electrical properties in tert-butylated phthalocyanine thin film fabricated by uniaxial solution coating. Electron. Comm. JPN 2021, 104, 113–119. [Google Scholar] [CrossRef]
- Rizal, C. Magneto-optic surface plasmon resonance Ti/Au/Co/Au/Pc configuration and sensitivity. Magnetochemistry 2018, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- González-Díaz, J.; García-Martín, A.; Armelles, G.; García-Martín, J.; Clavero, C.; Cebollada, A.; Lukaszew, R.; Skuza, J.; Kumah, D.; Clarke, R. Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures. Phys. Rev. B 2007, 76, 153402. [Google Scholar] [CrossRef] [Green Version]
- Borovkov, V.V.; Lintuluoto, J.M.; Inoue, Y. Synthesis of Zn-, Mn-, and Fe-containing mono- and heterometallated ethanediyl-bridged porphyrin dimers. Helv. Chim. Acta 1999, 82, 919–934. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, R.C.W.; Mak, T.C.W.; Chan, T.W.D.; Ng, D.K.P. Synthesis, spectroscopic and electrochemical properties of substituted bis(phthalocyaninato)lanthanide(III) complexes. Polyhedron 1997, 16, 515–520. [Google Scholar] [CrossRef]
- Bodik, M.; Maxian, O.; Hagara, J.; Nadazdy, P.; Jergel, M.; Majkova, E.; Siffalovic, P. Langmuir–Scheaffer technique as a method for controlled alignment of 1D materials. Langmuir 2020, 36, 4540–4547. [Google Scholar] [CrossRef]
- Hussain, S.A.; Dey, B.; Bhattacharjee, D.; Mehtab, N. Unique supramolecular assembly through Langmuir—Blodgett (LB) technique. Helyon 2018, 4, e01038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komeda, T.; Katoh, K.; Yamashita, M. Double-decker phthalocyanine complex: Scanning tunneling microscopy study of film formation and spin properties. Prog. Surf. Sci. 2014, 89, 127–160. [Google Scholar] [CrossRef]
- Valkova, L.A.; Zyablov, S.V.; Erokhin, V.V.; Koifman, O.I. Nanoaggregates in floating layers of azaporphyrins. J. Porphyr. Phthalocyanines 2010, 14, 513–522. [Google Scholar] [CrossRef]
- Vittorino, E.; Giancane, G.; Bettini, S.; Valli, L.; Sortino, S. Bichromophoric multilayer films for the light-controlled generation of nitric oxide and singlet oxygen. J. Mater. Chem. 2009, 19, 8253–8258. [Google Scholar] [CrossRef]
- Giancane, G.; Borovkov, V.; Inoue, Y.; Conoci, S.; Valli, L. Syn-anti conformation switching of a bis-porphyrin derivative at the air-water interface and in the solid state as an effective tool for chemical sensing. Soft Matter 2013, 9, 2302–2307. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Hong, X.; Lapsley, M.C.; Shang, Y.; Hall, E.A.H. Mapping minimum reflection distribution of surface plasmon resonance with a complex refractive index. Anal. Methods 2016, 8, 8299. [Google Scholar]
- Buccolieri, A.; Hasan, M.; Bettini, S.; Bonfrate, V.; Salvatore, L.; Santino, A.; Borovkov, V.; Giancane, G. Ethane-bridged bisporphyrin conformational changes as an effective analytical tool for nonenzymatic detection of urea in the physiological range. Anal. Chem. 2018, 90, 6952–6958. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manera, M.G.; Giancane, G.; Bettini, S.; Valli, L.; Borovkov, V.; Colombelli, A.; Lospinoso, D.; Rella, R. MagnetoPlasmonic Waves/HOMO-LUMO Free π-Electron Transitions Coupling in Organic Macrocycles and Their Effect in Sensing Applications. Chemosensors 2021, 9, 272. https://doi.org/10.3390/chemosensors9100272
Manera MG, Giancane G, Bettini S, Valli L, Borovkov V, Colombelli A, Lospinoso D, Rella R. MagnetoPlasmonic Waves/HOMO-LUMO Free π-Electron Transitions Coupling in Organic Macrocycles and Their Effect in Sensing Applications. Chemosensors. 2021; 9(10):272. https://doi.org/10.3390/chemosensors9100272
Chicago/Turabian StyleManera, Maria Grazia, Gabriele Giancane, Simona Bettini, Ludovico Valli, Victor Borovkov, Adriano Colombelli, Daniela Lospinoso, and Roberto Rella. 2021. "MagnetoPlasmonic Waves/HOMO-LUMO Free π-Electron Transitions Coupling in Organic Macrocycles and Their Effect in Sensing Applications" Chemosensors 9, no. 10: 272. https://doi.org/10.3390/chemosensors9100272
APA StyleManera, M. G., Giancane, G., Bettini, S., Valli, L., Borovkov, V., Colombelli, A., Lospinoso, D., & Rella, R. (2021). MagnetoPlasmonic Waves/HOMO-LUMO Free π-Electron Transitions Coupling in Organic Macrocycles and Their Effect in Sensing Applications. Chemosensors, 9(10), 272. https://doi.org/10.3390/chemosensors9100272