A Systematic Selection Process of Machine Learning Cloud Services for Manufacturing SMEs
"> Figure 1
<p>The research framework of this paper (derived from [<a href="#B65-computers-11-00014" class="html-bibr">65</a>]).</p> "> Figure 2
<p>DSS for machine learning cloud service selection of manufacturing SMEs (based on [<a href="#B20-computers-11-00014" class="html-bibr">20</a>]). Exemplary target dimensions a and b with respective requirement categories a1, a2, b1, b2 and evaluation criteria 1, 2, 3, etc. for machine learning cloud services A, B, and C.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Cloud Computing for SMEs
2.2. Existing Approaches for Cloud Service Selection
2.3. ML in Manufacturing
3. Research Method
Analytic Hierarchy Process
4. Designed Artifact
Decision Process
5. Case Study (Validation)
5.1. Decision Problem (DSS Step 1)
5.2. Service Evaluation (DSS Step 2)
5.3. Criteria Weighting (DSS Step 3)
5.4. Decision Making (DSS Step 4)
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Level 2—Target Dimensions | |||||||||
---|---|---|---|---|---|---|---|---|---|
IT Security = I|Reliability = R|Cloud Management = C|Flexibility = F|Costs = C|Performance = P | |||||||||
I | R | C | F | C | P | LW | |||
I | 1.00 | 5.00 | 3.00 | 3.00 | 1.00 | 1.00 | 0.270 | ||
R | 0.20 | 1.00 | 5.00 | 3.00 | 1.00 | 1.00 | 0.172 | ||
C | 0.33 | 0.20 | 1.00 | 0.20 | 0.20 | 0.33 | 0.045 | ||
F | 0.33 | 0.33 | 5.00 | 1.00 | 1.00 | 0.33 | 0.119 | ||
C | 1.00 | 1.00 | 5.00 | 1.00 | 1.00 | 3.00 | 0.227 | ||
P | 1.00 | 1.00 | 3.00 | 3.00 | 0.33 | 1.00 | 0.167 | ||
CI = 0.174 CR = 0.140 | |||||||||
Level 3—Requirement Categories | |||||||||
Security Architecture = S|Compliance = C|Data Protection = D | Trustworthiness = T|Service Promise = S|Redundancy = R | ||||||||
S | C | D | LW | T | S | R | LW | ||
S | 1.00 | 7.00 | 0.33 | 0.295 | T | 1.00 | 3.00 | 3.00 | 0.600 |
C | 0.14 | 1.00 | 0.11 | 0.057 | S | 0.33 | 1.00 | 1.00 | 0.200 |
D | 3.00 | 9.00 | 1.00 | 0.649 | R | 0.33 | 1.00 | 1.00 | 0.200 |
CI = 0.041 CR = 0.07 | CI = 0.000 CR = 0.000 | ||||||||
Support = SU/Service = SE | Interoperability = I/Portability = P | ||||||||
SU | SE | LW | I | P | LW | ||||
SU | 1.00 | 3.00 | 0.750 | I | 1.00 | 5.00 | 0.830 | ||
SE | 0.33 | 1.00 | 0.250 | P | 0.20 | 1.00 | 0.170 | ||
CI = 0.000 CR = 0.000 | CI = 0.000 CR = 0.000 | ||||||||
Payment method = PA/Pricing model = PR | Usability = U/Functionality = F | ||||||||
PA | PR | LW | U | F | LW | ||||
PA | 1.00 | 1.00 | 0.500 | U | 1.00 | 5.00 | 0.830 | ||
PR | 1.00 | 1.00 | 0.500 | F | 0.20 | 1.00 | 0.170 | ||
CI = 0.000 CR = 0.000 | CI = 0.000 CR = 0.000 | ||||||||
Level 4—Evaluation Criteria | |||||||||
Data center Security = D|Cloud Security = C | Data residency = D/Compliance Certifications = C | ||||||||
D | C | LW | D | C | LW | ||||
D | 1.00 | 0.200 | 0.170 | D | 1.00 | 1.00 | 0.500 | ||
C | 5.00 | 1.00 | 0.830 | C | 1.00 | 1.00 | 0.500 | ||
CI = 0.000 CR = 0.000 | CI = 0.000 CR = 0.000 | ||||||||
Vendor Reputation = VR|Vendor Transparency = VT | Technical Support = T|Community Support = C | ||||||||
VR | VT | LW | T | C | LW | ||||
VR | 1.00 | 1.00 | 0.500 | T | 1.00 | 1.00 | 0.500 | ||
VT | 1.00 | 1.00 | 0.500 | C | 1.00 | 1.00 | 0.500 | ||
CI = 0.000 CR = 0.000 | CI = 0.000 CR = 0.000 | ||||||||
Frameworks and SDKs = F|Developer Tools (IDE) = D | Data migration = DM|Data Portability = DP | ||||||||
F | D | LW | DM | DP | LW | ||||
F | 1.00 | 0.33 | 0.250 | DM | 1.00 | 5.00 | 0.830 | ||
D | 3.00 | 1.00 | 0.750 | DP | 0.20 | 1.00 | 0.170 | ||
CI = 0.000 CR = 0.000 | CI = 0.000 CR = 0.000 | ||||||||
Payment Models = P/Billing Models = B | Pricing = P|Price Transparency = PT | ||||||||
P | B | LW | P | PT | LW | ||||
P | 1.00 | 0.20 | 0.170 | P | 1.00 | 0.33 | 0.250 | ||
B | 5.00 | 1.00 | 0.830 | PT | 3.00 | 1.00 | 0.750 | ||
CI = 0.000 CR = 0.000 | CI = 0.000 CR = 0.000 | ||||||||
Service Design = S|Usability = U|Customizability = C | |||||||||
S | U | C | LW | ||||||
S | 1.00 | 0.33 | 1.00 | 0.220 | |||||
U | 3.00 | 1.00 | 1.00 | 0.450 | |||||
C | 1.00 | 1.00 | 1.00 | 0.330 | |||||
CI = 0.068 CR = 0.117 |
References
- Serrano-Ruiz, J.C.; Mula, J.; Poler, R. Smart Master Production Schedule for the Supply Chain: A Conceptual Framework. Computers 2021, 10, 156. [Google Scholar] [CrossRef]
- Oberländer, A.M.; Röglinger, M.; Rosemann, M.; Kees, A. Conceptualizing business-to-thing interactions—A sociomaterial perspective on the Internet of Things. Eur. J. Inf. Syst. 2018, 27, 486–502. [Google Scholar] [CrossRef]
- Pauli, T.; Marx, E.; Matzner, M. Leveraging industrial IoT platform ecosystems: Insights from the complementors’ perspective. In Proceedings of the 28th European Conference on Information Systems, Marrakech, Morocco, 15–17 June 2020. [Google Scholar]
- Geisberger, E.; Broy, M. Agenda CPS: Integrierte Forschungsagenda Cyber-Physical Systems; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 9783642290985. [Google Scholar]
- Donnelly, J.; John, A.; Mirlach, J.; Osberghaus, K.; Rother, S.; Schmidt, C.; Voucko-Glockner, H.; Wenninger, S. Enabling the smart factory—A digital platform concept for standardized data integration. In Proceedings of the 2nd Conference on Production Systems and Logistics, Virtual, 10–11 August 2021. [Google Scholar]
- Bauer, D.; Maurer, T.; Henkel, C.; Bildstein, A. Big-Data-Analytik: Datenbasierte Optimierung Produzierender Unternehmen; Fraunhofer IPA: Stuttgart, Germany, 2017; Available online: https://zenodo.org/record/803099#.YeLTEf7MJaQ (accessed on 15 November 2021).
- Kaymakci, C.; Wenninger, S.; Sauer, A. A holistic framework for AI systems in industrial applications. In International Conference on Wirtschaftsinformatik; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Lee, J.; Davari, H.; Singh, J.; Pandhare, V. Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manuf. Lett. 2018, 18, 20–23. [Google Scholar] [CrossRef]
- Leo Kumar, S.P. State of The Art-Intense Review on Artificial Intelligence Systems Application in Process Planning and Manufacturing. Eng. Appl. Artif. Intell. 2017, 65, 294–329. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson: Boston, MA, USA, 2021; ISBN 9780134610993. [Google Scholar]
- Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.-D. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016, 4, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.B.; Bøgh, S. Artificial intelligence and internet of things in small and medium-sized enterprises: A survey. J. Manuf. Syst. 2021, 58, 362–372. [Google Scholar] [CrossRef]
- Madani, A.E. SME Policy: Comparative Analysis of SME Definitions. Int. J. Acad. Res. Bus. Soc. Sci. 2018, 8, 100–111. [Google Scholar] [CrossRef]
- Ferreira de Araújo Lima, P.; Crema, M.; Verbano, C. Risk management in SMEs: A systematic literature review and future directions. Eur. Manag. J. 2020, 38, 78–94. [Google Scholar] [CrossRef]
- Welte, R.; Estler, M.; Lucke, D. A Method for Implementation of Machine Learning Solutions for Predictive Maintenance in Small and Medium Sized Enterprises. Procedia CIRP 2020, 93, 909–914. [Google Scholar] [CrossRef]
- Pols, A.; Heidkamp, P. Cloud-Monitor 2020. KPMG and Bitkom Research. 2020. Available online: https://www.bitkom.org/sites/default/files/2020-06/prasentation_bitkom_kpmg_pk-cloud-monitor.pdf (accessed on 15 November 2021).
- Metzg, C.; Reitz, T.; Villar, J. Cloud Computing: Chancen und Risiken aus Technischer und Unternehmerischer Sicht; Hanser: München, Germany, 2011; ISBN 9783446424548. [Google Scholar]
- Appelrath, H.-J.; Kagermann, H.; Krcmar, H. (Eds.) Future Business Clouds: Cloud Computing am Standort Deutschland Zwischen Anforderungen, Nationalen Aktivitäten und Internationalem Wettbewerb; Utz: München, Germany, 2014; ISBN 9783831643561. [Google Scholar]
- Repschläger, J.; Wind, S.; Zarnekow, R.; Turowski, K. Decision model for selecting a cloud provider: A study of service model decision priorities. In Proceedings of the Nineteenth Americas Conference on Information Systems, Chicago, IL, USA, 15–17 August 2013. [Google Scholar]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Gregor, S.; Hevner, A. Positioning and Presenting Design Science Research for Maximum Impact. Manag. Inf. Syst. Q. 2013, 37, 337–355. [Google Scholar] [CrossRef]
- Guzman, E.; Andres, B.; Poler, R. Matheuristic Algorithm for Job-Shop Scheduling Problem Using a Disjunctive Mathematical Model. Computers 2022, 11, 1. [Google Scholar] [CrossRef]
- Hanussek, M.; Papp, H.; Blohm, M.; Kintz, M.; Grigorjan, A.; Brandt, D.; Hennebold, C.; Oberle, M. Cloudbasierte KI-Plattformen: Chancen und Grenzen von Diensten für Machine Learning as a Service; Fraunhofer IAO and Fraunhofer IPA: Stuttgart, Germany, 2021. [Google Scholar]
- Assante, D.; Castro, M.; Hamburg, I.; Martin, S. The Use of Cloud Computing in SMEs. Procedia Comput. Sci. 2016, 83, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Xu, X. From cloud computing to cloud manufacturing. Robot. Comput. Integr. Manuf. 2012, 28, 75–86. [Google Scholar] [CrossRef]
- Gupta, P.; Seetharaman, A.; Raj, J.R. The usage and adoption of cloud computing by small and medium businesses. Int. J. Inf. Manag. 2013, 33, 861–874. [Google Scholar] [CrossRef]
- Sahandi, R.; Alkhalil, A.; Opara-Martins, J. SMEs’ perception of cloud computing: Potential and security. In Proceedings of the Collaborative Networks in the Internet of Services, 13th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2012, Bournemouth, UK, 1–3 October 2012; Camarinha-Matos, L.M., Xu, L., Afsarmanesh, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 186–195, ISBN 978-3-642-32775-9. [Google Scholar]
- Mell, P.M.; Grance, T. The Nist Definition of Cloud Computing, Gaithersburg, MD. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf (accessed on 5 October 2020).
- Leeser, D.C. Digitalisierung in KMU Kompakt: Compliance und IT-Security, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9783662597385. [Google Scholar]
- Microsoft. Was Its Cloud Computing? Leitfaden für Einsteiger Microsoft Azure. Available online: https://azure.microsoft.com/de-de/overview/what-is-cloud-computing/#uses (accessed on 25 September 2020).
- Ribeiro, M.; Grolinger, K.; Capretz, M.A. MLaaS: Machine Learning as a Service. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications, ICMLA 2015, Miami, FL, USA, 9–11 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 896–902, ISBN 978-1-5090-0287-0. [Google Scholar]
- Khan, N.; Al-Yasiri, A. Framework for cloud computing adoption: A road map for Smes to cloud migration. IJCCSA 2015, 5, 1–15. [Google Scholar] [CrossRef]
- Li, Q.; Wang, C.; Wu, J.; Li, J.; Wang, Z.-Y. Towards the business–information technology alignment in cloud computing environment: Anapproach based on collaboration points and agents. Int. J. Comput. Integr. Manuf. 2011, 24, 1038–1057. [Google Scholar] [CrossRef]
- Mahesh, S.; Landry, B.J.L.; Sridhar, T.; Walsh, K.R. A Decision Table for the Cloud Computing Decision in Small Business. Inf. Resour. Manag. J. 2011, 24, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Repschläger, J. Cloud Computing Anbieterauswahl Framework. 2013. Available online: https://www.ikm.tu-berlin.de/fileadmin/fg16/Archiv/Forschungsprojekte/Cloud_Computing_Anbieterauswahl_Framework_v1-1.pdf (accessed on 15 November 2021).
- Géczy, P.; Izumi, N.; Hasida, K. Cloudsourcing: Managing Cloud Adoption. Glob. J. Bus. Res. 2012, 6, 57–70. [Google Scholar]
- Luoma, E.; Nyberg, T. Four Scenarios for Adoption of Cloud Computing in China. In Proceedings of the ECIS 2011 Proceedings, Helsinki, Finland, 9–11 June 2011; Available online: https://aisel.aisnet.org/ecis2011/123 (accessed on 15 November 2021).
- Hetzenecker, J.; Sebastian, K.; Valerie, Z.; Michael, A. Anforderungen an Cloud Computing Anbieter. Multikonferenz Wirtschaftsinformatik, Tagungsband der MKWI 2021. 2012. Available online: https://publikationsserver.tu-braunschweig.de/servlets/MCRFileNodeServlet/dbbs_derivate_00027455/Beitrag245.pdf (accessed on 15 November 2021).
- Garg, S.K.; Versteeg, S.; Buyya, R. A framework for ranking of cloud computing services. Future Gener. Comput. Syst. 2013, 29, 1012–1023. [Google Scholar] [CrossRef]
- Ahlrichs, J.; Rockstuhl, S.; Tränkler, T.; Wenninger, S. The impact of political instruments on building energy retrofits: A risk-integrated thermal Energy Hub approach. Energy Policy 2020, 147, 111851. [Google Scholar] [CrossRef]
- Gilmore, A.; Carson, D.; O’Donnell, A. Small business owner-managers and their attitude to risk. Mark. Intell. Plan. 2004, 22, 349–360. [Google Scholar] [CrossRef]
- Rockstuhl, S.; Wenninger, S.; Wiethe, C.; Häckel, B. Understanding the risk perception of energy efficiency investments: Investment perspective vs. energy bill perspective. Energy Policy 2021, 159, 112616. [Google Scholar] [CrossRef]
- Mehrabi, M.G.; Ulsoy, A.G.; Koren, Y. Reconfigurable manufacturing systems: Key to future manufacturing. J. Intell. Manuf. 2000, 11, 403–419. [Google Scholar] [CrossRef]
- Andelfinger, V.P.; Hänisch, T. Industrie 4.0: Wie Cyber-Physische Systeme Die Arbeitswelt Verändern; Springer Fachmedien: Wiesbaden, Germany, 2017; ISBN 978-3-658-15556-8. [Google Scholar]
- Polyzotis, N.; Roy, S.; Whang, S.E.; Zinkevich, M. Data Lifecycle Challenges in Production Machine Learning. ACM SIGMOD Rec. 2018, 47, 17–28. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA; London, UK, 2016; ISBN 9780262035613. [Google Scholar]
- Witten, I.H.; Pal, C.J.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann: Cambridge, MA, USA, 2017; ISBN 0128043571. [Google Scholar]
- Kessler, R.; Gómez, J.M. Implikationen von Machine Learning auf das Datenmanagement in Unternehmen. HMD 2020, 57, 89–105. [Google Scholar] [CrossRef]
- Wenninger, S.; Wiethe, C. Benchmarking Energy Quantification Methods to Predict Heating Energy Performance of Residential Buildings in Germany. Bus. Inf. Syst. Eng. 2021, 63, 223–242. [Google Scholar] [CrossRef]
- Arslan, Y. Evaluierung Cloudbasierter Machine Learning Services: Evaluierung Cloudbasierter Machine Learning Services; Hochschule für angewandte Wissenschaften Hamburg: Hamburg, Germany, 2019; Available online: https://www.kfw.de/Download-Center/Konzernthemen/Research/PDF-Dokumente-Sonderpublikationen/Prognos-Energieeffizienz-und-Energiedienstl.-in-KMU-Februar-2010.pdf (accessed on 9 November 2020).
- Bishop, C.M. Pattern Recognition and Machine Learning, 8th ed.; Springer: New York, NY, USA, 2009; ISBN 0387310738. [Google Scholar]
- Kratsch, W.; Manderscheid, J.; Röglinger, M.; Seyfried, J. Machine Learning in Business Process Monitoring: A Comparison of Deep Learning and Classical Approaches Used for Outcome Prediction. Bus. Inf. Syst. Eng. 2020, 63, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Thamling, N.; Seefeldt, F.; Glöckner, U. Rolle und Bedeutung von Energieeffizienz und Energiedienstleistungen in KMU; KfW Bankengruppe: Berlin, Germany, 2010. [Google Scholar]
- Bank, L.; Wenninger, S.; Köberlein, J.; Lindner, M.; Kaymakci, C.; Weigold, M.; Sauer, A.; Schilp, J. Integrating energy flexibility in Production planning and control—An energy flexibility data model-based approach. In Proceedings of the 2nd Conference on Production Systems and Logistics, Virtual, 10–11 August 2021. [Google Scholar]
- Simon, P.; Schultz, C.; Keller, F. Energie für unser Europa: Symposium Energieinnovation, 10–12 February 2016; Verlag der Technischen Universität Graz: Graz, Austria, 2016; p. 397. ISBN 9783851254488. [Google Scholar]
- Bauer, D.; Hieronymus, A.; Kaymakci, C.; Köberlein, J.; Schimmelpfennig, J.; Wenninger, S.; Zeiser, R. Wie IT die Energieflexibilitätsvermarktung von Industrieunternehmen ermöglicht und die Energiewende unterstützt. HMD 2021, 58, 102–115. [Google Scholar] [CrossRef]
- Rusche, S.; Rockstuhl, S.; Wenninger, S. Quantifizierung unternehmerischer Nachhaltigkeit in der Fertigungsindustrie: Entwicklung eines zielorientierten Nachhaltigkeitsindex. Z Energ. 2021, 45, 317–343. [Google Scholar] [CrossRef]
- Du Preez, A.; Oosthuizen, G.A. Machine learning in cutting processes as enabler for smart sustainable manufacturing. Procedia Manuf. 2019, 33, 810–817. [Google Scholar] [CrossRef]
- Abdelkafi, N.; Döbel, I.; Drzewiecki, J.D.; Meironke, A.; Niekler, A.; Ries, S. Künstliche Intelligenz (KI) im Unternehmenskontext; Fraunhofer IMW & University Leipzig: Leipzig, Germany, 2019. [Google Scholar]
- Kaymakci, C.; Wenninger, S.; Sauer, A. Energy anomaly detection with long short-term memory based autoencoders of industrial applications. In Proceedings of the 54th CIRP Conference on Manufacturing Systems, Athens, Greece, 22–24 September 2021. [Google Scholar]
- Li, B.; Hou, B.; Yu, W.; Lu, X.; Yang, C. Applications of artificial intelligence in intelligent manufacturing: A review. Front. Inf. Technol. Electron. Eng. 2017, 18, 86–96. [Google Scholar] [CrossRef]
- Wenninger, S.; Kaymakci, C.; Wiethe, C.; Römmelt, J.; Baur, L.; Häckel, B.; Sauer, A. How sustainable is machine learning in energy applications?—The sustainable machine learning balance sheet. In Proceedings of the 17th International Conference on Wirtschaftsinformatik, Nürnberg, Germany, 21–23 February 2022. [Google Scholar]
- Schmitt, J.; Bönig, J.; Borggräfe, T.; Beitinger, G.; Deuse, J. Predictive model-based quality inspection using Machine Learning and Edge Cloud Computing. Adv. Eng. Inform. 2020, 45, 101101. [Google Scholar] [CrossRef]
- Escobar, C.A.; Morales-Menendez, R. Machine learning techniques for quality control in high conformance manufacturing environment. Adv. Mech. Eng. 2018, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hevner, A.R.; March, S.T.; Park, J.; Ram, S. Design Science in Information Systems Research. MIS Q. 2004, 28, 75–105. [Google Scholar] [CrossRef] [Green Version]
- Hevner, A.R. A Three Cycle View of Design Science Research. Scand. J. Inf. Syst. 2007, 19, 4. [Google Scholar]
- Peffers, K.; Tuunanen, T.; Rothenberger, M.A.; Chatterjee, S. A Design Science Research Methodology for Information Systems Research. J. Manag. Inf. Syst. 2007, 24, 45–77. [Google Scholar] [CrossRef]
- Tam, M.C.; Tummala, V. An application of the AHP in vendor selection of a telecommunications system. Omega 2001, 29, 171–182. [Google Scholar] [CrossRef]
- Godse, M.; Mulik, S. An approach for selecting Software-as-a-Service (SaaS) product. In Proceedings of the 2009 IEEE International Conference on Cloud Computing, Bangalore, India, 21–25 September 2009; pp. 155–158, ISBN 2159-6190. [Google Scholar]
- Liberatore, M.J.; Nydick, R.L.; Sanchez, P.M. The Evaluation of Research Papers (Or How to Get an Academic Committee to Agree on Something). Interfaces 1992, 22, 92–100. [Google Scholar] [CrossRef] [Green Version]
- BSI. Anforderungskatalog Cloud Computing. 2017. Available online: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Broschueren/Anforderungskatalog-Cloud_Computing-C5.pdf?__blob=publicationFile&v=4 (accessed on 15 November 2021).
- Lee, Y.-C.; Tang, N.-H. A deployment model for cloud computing using the analytic hierarchy process and BCOR analysis. In Proceedings of the 2012 America Conference on Information Systems, Seattle, WA, USA, 9–12 August 2012. [Google Scholar]
- Weinhardt, C.; Anandasivam, A.; Blau, B.; Borissov, N.; Meinl, T.; Michalk, W.; Stößer, J. Cloud-Computing. Wirtsch. Inform. 2009, 51, 453–462. [Google Scholar] [CrossRef]
- Informatik 2011: Informatik Schafft Communities; 41. Jahrestagung der Gesellschaft für Informatik e.V. (GI); 4.10. bis 7.10.2011, TU Berlin; Heiß, H.-U. (Ed.) Ges. für Informatik: Bonn, Germany, 2011; ISBN 9783885792864. [Google Scholar]
- Ang, L.; Yang, X.; Kandula, S.; Zhang, M. Comparing Public-Cloud Providers. IEEE Internet Comput. 2011, 15, 50–53. [Google Scholar] [CrossRef]
- Kaymakci, C.; Baur, L.; Sauer, A. Federated Machine Learning Architecture for Energy-Efficient Industrial Applications. In Proceedings of the Conference on Production Systems and Logistics: CPSL 2021, Virtual, 10–11 August 2021. [Google Scholar] [CrossRef]
- Wenninger, S.; Kaymakci, C.; Wiethe, C. Explainable long-term building energy consumption prediction using QLattice. Appl. Energy 2022, 308, 118300. [Google Scholar] [CrossRef]
Level 1: Goal | Level 2: Target Dimension | Level 3: Requirement Category | Level 4: Evaluation Criteria |
---|---|---|---|
Machine Learning Cloud Service Selection | IT Security | Security architecture | Data center security |
Cloud security | |||
Compliance | Data residence | ||
Compliance certifications | |||
Data protection | Conformity with the GDPR | ||
Reliability | Trustworthiness | Vendor reputation | |
Vendor transparency | |||
Service promise | Service level agreements | ||
Redundancy | Geo-Redundancy | ||
Cloud management | Support | Technical support | |
Community support | |||
Service | Free trial version | ||
Flexibility | Interoperability | Frameworks and SDKs | |
Developer tools (IDEs) | |||
Portability | Data migration | ||
Data portability | |||
Costs | Payment method | Payment model | |
Billing model | |||
Pricing model | Pricing | ||
Price transparency | |||
Performance | Usability | Service design | |
Usability | |||
Customizability | |||
Functionality | Service functionality |
Target Dimension | Local Weight | Requirement Category | Local Weight | Evaluation Criteria | Local Weight | Global Weight |
---|---|---|---|---|---|---|
IT Security | 0.272 | Security architecture | 0.29 | Data center security | 0.17 | 0.0134 |
Cloud security | 0.83 | 0.0655 | ||||
Compliance | 0.06 | Data residence | 0.5 | 0.0082 | ||
Compliance certifications | 0.5 | 0.0082 | ||||
Data protection | 0.65 | GDPR conformity | 1 | 0.1768 | ||
Reliability | 0.172 | Trustworthiness | 0.6 | Vendor reputation | 0.5 | 0.0516 |
Vendor transparency | 0.5 | 0.0516 | ||||
Service promise | 0.2 | Service level agreements | 1 | 0.0344 | ||
Redundancy | 0.2 | Geo redundancy | 1 | 0.0344 | ||
Cloud management | 0.042 | Support | 0.75 | Technical support | 0.5 | 0.0158 |
Community Support | 0.5 | 0.0158 | ||||
Service | 0.25 | Free trial version | 1 | 0.0105 | ||
Flexibility | 0.118 | Interoperability | 0.83 | Frameworks and SDK | 0.25 | 0.0245 |
Developer tools (IDE) | 0.75 | 0.0735 | ||||
Portability | 0.17 | Data migration | 0.83 | 0.0166 | ||
Data portability | 0.17 | 0.0034 | ||||
Costs | 0.228 | Payment method | 0.5 | Payment model | 0.17 | 0.0194 |
Billing model | 0.83 | 0.0946 | ||||
Pricing model | 0.5 | Pricing | 0.25 | 0.0285 | ||
Price transparency | 0.75 | 0.0855 | ||||
Performance | 0.168 | Usability | 0.83 | Service Design | 0.22 | 0.0307 |
Usability | 0.45 | 0.0627 | ||||
Customizability | 0.33 | 0.0460 | ||||
Functionality | 0.17 | Service functionality | 1 | 0.0286 |
Target Dimension | AWS SageMaker | Azure ML | GCP AI Platform |
---|---|---|---|
Score | Score | Score | |
IT Security | 0.0508 | 0.0508 | 0.0473 |
Reliability | 0.0658 | 0.0783 | 0.034 |
Cloud management | 0.0147 | 0.0173 | 0.0095 |
Flexibility | 0.0578 | 0.0356 | 0.0503 |
Costs | 0.0868 | 0.0664 | 0.0249 |
Performance | 0.03 | 0.0664 | 0.0344 |
Σ Score | 0.3059 | 0.3148 | 0.2004 |
Normalized Score | 0.3725 | 0.3834 | 0.2441 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaymakci, C.; Wenninger, S.; Pelger, P.; Sauer, A. A Systematic Selection Process of Machine Learning Cloud Services for Manufacturing SMEs. Computers 2022, 11, 14. https://doi.org/10.3390/computers11010014
Kaymakci C, Wenninger S, Pelger P, Sauer A. A Systematic Selection Process of Machine Learning Cloud Services for Manufacturing SMEs. Computers. 2022; 11(1):14. https://doi.org/10.3390/computers11010014
Chicago/Turabian StyleKaymakci, Can, Simon Wenninger, Philipp Pelger, and Alexander Sauer. 2022. "A Systematic Selection Process of Machine Learning Cloud Services for Manufacturing SMEs" Computers 11, no. 1: 14. https://doi.org/10.3390/computers11010014
APA StyleKaymakci, C., Wenninger, S., Pelger, P., & Sauer, A. (2022). A Systematic Selection Process of Machine Learning Cloud Services for Manufacturing SMEs. Computers, 11(1), 14. https://doi.org/10.3390/computers11010014