A Compensation Method for Nonlinearity Errors in Optical Interferometry
<p>Basic structures of heterodyne and homodyne interferometers for vibration detection and the corresponding sources of nonlinearity: (<b>a</b>) heterodyne, and (<b>b</b>) homodyne. Solid lines with arrows indicate the main optical beams in the interferometry while the dashed lines indicate the major cross talks that can generate nonlinearities. Here “I” and “Q” denote the in-phase and quadrature signals of the output, respectively, ”CIRC” denotes the circulator, “LD” denotes the laser diode, “PD” denotes the photodiode, and “PC” denotes the polarization controller.</p> "> Figure 2
<p>IQ Lissajous curve of (<b>a</b>) the 1st-order and (<b>b</b>) the 2nd-order nonlinear distortions.</p> "> Figure 3
<p>Exaggerated nonlinear phase errors for different vibration amplitudes. Vibration <math display="inline"><semantics> <msub> <mi>s</mi> <mn>1</mn> </msub> </semantics></math> is for a vibration with an amplitude of 1 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m while <math display="inline"><semantics> <msub> <mi>s</mi> <mn>2</mn> </msub> </semantics></math> is for an amplitude of 2 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m: (<b>a</b>) Distorted signals with a 1st-order distortion. The drift of the circle origin is 75% of the radius of the IQ circle. (<b>b</b>) Distorted signals with a 2nd-order distortion. In this plot, the eccentricity of the ellipse is 0.9657.</p> "> Figure 4
<p>(<b>a</b>) Spectra difference of two different signals with the same 2nd-order nonlinearity error but with different vibration amplitudes (<math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>→</mo> </mrow> </semantics></math> 1 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m, <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>→</mo> </mrow> </semantics></math> 2 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m). (<b>b</b>) The spectra of a carotid pulse-generated skin displacement and the same signal but with an artificially 2nd-order nonlinear error (<math display="inline"><semantics> <mrow> <mi>e</mi> <mo>=</mo> <mn>0.9657</mn> </mrow> </semantics></math>).</p> "> Figure 5
<p>Inverse function of the 1st-order nonlinearity: (<b>a</b>) A section of the data that is monotonic (<b>b</b>) The inverse function of this section (<b>c</b>) The spectrum of the inversely mapped signals, featuring peaks at multiples of <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>/</mo> <mi>λ</mi> </mrow> </semantics></math>.</p> "> Figure 6
<p>Inverse function of the 2nd-order nonlinearity: (<b>a</b>) A section of the data that is monotonic (<b>b</b>) The inverse function of this section (<b>c</b>) The spectrum of the inversely mapped signals, featuring peaks at multiples of <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>/</mo> <mi>λ</mi> </mrow> </semantics></math>.</p> "> Figure 7
<p>The <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>/</mo> <mi>λ</mi> </mrow> </semantics></math> peak values as a result of the scanning of <math display="inline"><semantics> <msub> <mi>x</mi> <mi>d</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>y</mi> <mi>d</mi> </msub> </semantics></math>. The original signal was set with the 1st-order nonlinear error by introducing a <math display="inline"><semantics> <msub> <mi>y</mi> <mi>d</mi> </msub> </semantics></math> of <math display="inline"><semantics> <mrow> <mn>0.25</mn> </mrow> </semantics></math>, which is identified through scanning.</p> "> Figure 8
<p>The complete procedure of the 1st-order nonlinear deviation with <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mi>d</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>0.2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>=</mo> <mn>0.14</mn> </mrow> </semantics></math> for a signal with an amplitude of <math display="inline"><semantics> <mrow> <mn>5</mn> <mspace width="3.33333pt"/> <mi mathvariant="sans-serif">μ</mi> </mrow> </semantics></math>m. The compensated parameters are <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>f</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mo>−</mo> <mn>0.223</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mrow> <mi>f</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mn>0.132</mn> </mrow> </semantics></math>, respectively. The curves in figure (<b>d</b>) are the deviations of all complete sections.</p> "> Figure 9
<p>The complete procedure of the 2nd-order nonlinearity compensation for a nonlinear signal with <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>1.134</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <msup> <mn>45</mn> <mo>∘</mo> </msup> </mrow> </semantics></math> for a signal with an amplitude of 5 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m. The compensated parameters: <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>f</mi> </msub> <mo>=</mo> <mn>1.134</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>f</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mn>45</mn> <mo>.</mo> <msup> <mn>0</mn> <mo>∘</mo> </msup> </mrow> </semantics></math>. The curves in figure (<b>d</b>) are the deviations of all complete sections.</p> "> Figure 10
<p>Compensation for the 1st-order nonlinearity at different sinusoidal vibration frequencies and different amplitudes: (<b>a</b>) is for linear polyfit and (<b>b</b>) is for the quadratic polyfit.</p> "> Figure 11
<p>(<b>a</b>) A complex signal with two frequencies. The signal is <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>=</mo> <mi>A</mi> <mo>·</mo> <mo form="prefix">sin</mo> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mi>t</mi> <mo>×</mo> <mn>20</mn> <mspace width="3.33333pt"/> <mi>Hz</mi> <mo>+</mo> <mn>0.321</mn> <mi>π</mi> <mo>)</mo> <mo>+</mo> <mn>1.2</mn> <mi>A</mi> <mo>·</mo> <mo form="prefix">sin</mo> <mo>(</mo> <mn>2</mn> <mi>π</mi> <mi>t</mi> <mo>×</mo> <mn>66.4</mn> <mspace width="3.33333pt"/> <mi>Hz</mi> <mo>)</mo> </mrow> </semantics></math>. In this plot, <math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>2</mn> <mo>×</mo> <mi>λ</mi> <mo>/</mo> <mn>2</mn> <mo>.</mo> </mrow> </semantics></math> (<b>b</b>) The RMS deviation of the 1st-order error after the nonlinear compensation with a linear baseline fitting and quadratic baseline fitting for different values of <span class="html-italic">A</span> (vibration amplitude).</p> "> Figure 12
<p>Compensation for the 2nd-order nonlinearity in sinusoidal vibrations at different frequencies and amplitudes. Two baseline fittings are tested: (<b>a</b>) linear polyfit; (<b>b</b>) quadratic polyfit.</p> "> Figure 13
<p>The RMS deviation of the 2nd-order error after the nonlinear compensation on a complex signal with two different baseline fittings (linear fitting and quadratic fitting). The signal is the same as in <a href="#sensors-23-07942-f011" class="html-fig">Figure 11</a>.</p> "> Figure 14
<p>RMS deviation after compensation of the 1st- and 2nd-order nonlinearities with different original distortions. The original signal is the complex vibration shown in <a href="#sensors-23-07942-f011" class="html-fig">Figure 11</a>. (<b>a</b>) signals with only the 1st-order nonlinearities (<b>b</b>) signals with only the 2nd-order nonlinearities. The colors represent different deviation values.</p> "> Figure 15
<p>The deviation after compensation on a complex signal shown in <a href="#sensors-23-07942-f013" class="html-fig">Figure 13</a>. (<b>a</b>) the deviation in the compensated signal in the time domain using two different orders of compensation for the 1st- and 2nd-order nonlinearities (<b>b</b>) the RMS deviation after several cycles of compensation, while each cycle includes one 2nd-order and one 1st-order compensation.</p> "> Figure 16
<p>RMS value of the deviation after compensation when noise exists. The effectiveness of the compensation for different noise levels and different original deviation strengths are shown.</p> "> Figure 17
<p>The compensation of a real vibration with nonlinear errors measured with a PIC-based LDV. (<b>a</b>) shows the original distorted signal in the time domain, the corresponding signal after Heydemann correction, and the signal after the piece-wise fitting correction. (<b>b</b>) The original distorted signal, the signal after Heydemann correction, and the signal after the piece-wise fitting correction in the frequency domain.</p> ">
Abstract
:1. Background
2. Periodic Nonlinearity in Optical Interferometry
3. Proposed Methods
3.1. Inverse Function Method
3.2. Piece-Wise-Fitting Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AOM | Acousto Optic Modulator |
FFT | Fast Fourier Transform |
FOM | Figure of Merit |
LDV | Laser Doppler Vibrometry |
MZI | Mach-Zehnder Interferometer |
OFS | Optical frequency shifter |
PD | Photodiode |
PIC | Photonic Integrated Circuit |
RMS | Root-Mean-Square |
References
- Badami, V.; de Groot, P. Displacement Measuring Interferometry, Handbook of Optical Dimensional Metrology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 157–238. [Google Scholar]
- de Groot, P. A review of selected topics in interferometric optical metrology. Rep. Prog. Phys. 2019, 82, 056101. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, G. A review of interferometry for geometric measurement. Meas. Sci. Technol. 2018, 29, 102001. [Google Scholar] [CrossRef]
- Li, Y.; Baets, R. Nonlinear signal errors in homodyne laser Doppler vibrometry induced by strong 2nd-order ghost reflections and their mitigation. Opt. Express 2021, 29, 8283–8295. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Wilkening, G. Investigation and compensation of the nonlinearity of heterodyne interferometers. Precis. Eng. 1992, 14, 91–98. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, Y.; Hu, H. A simple technique for eliminating the nonlinearity of a heterodyne interferometer. Meas. Sci. Technol. 2009, 20, 105303. [Google Scholar] [CrossRef]
- Joo, K.; Ellis, J.; Spronck, J.; van Kan, P.; Schmidt, R. Simple heterodyne laser interferometer with subnanometer periodic errors. Opt. Lett. 2009, 34, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Chen, B.; Zhang, C.; Zhang, E.; Yang, Y. Analysis and verification of the nonlinear error resulting from the misalignment of a polarizing beam splitter in a heterodyne interferometer. Meas. Sci. Technol. 2015, 26, 085006. [Google Scholar] [CrossRef]
- Fu, H.; Hu, P.; Tan, J.; Fan, Z. Simple method for reducing the 1st-order optical nonlinearity in a heterodyne laser interferometer. Appl. Opt. 2015, 54, 6321–6326. [Google Scholar] [CrossRef] [PubMed]
- Eom, T.; Kim, J.; Kang, C.; Park, B.; Kim, J. A simple phase-encoding electronics for reducing the nonlinearity error of a heterodyne interferometer. Meas. Sci. Technol. 2008, 19, 075302. [Google Scholar] [CrossRef]
- Heydemann, P. Determination and correction of quadrature fringe measurement errors in interferometers. Appl. Opt. 1981, 20, 3382–3384. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Su, C. Nonlinearity in measurements of length by optical interferometry. Meas. Sci. Technol. 1996, 7, 62–68. [Google Scholar] [CrossRef]
- Xie, J.; Yan, L.; Chen, B.; Zhang, S. Iterative compensation of nonlinear error of heterodyne interferometer. Opt. Express 2017, 25, 4470–4482. [Google Scholar] [CrossRef] [PubMed]
- Badami, V.; Patterson, S. A frequency domain method for the measurement of nonlinearity in heterodyne interferometry. Precis. Eng. 2000, 24, 41–49. [Google Scholar] [CrossRef]
- Kim, P.; Kim, K.; You, K. Adaptive compensation for the nonlinearity error in a heterodyne interferometer. J. Korean Phys. Soc. 2012, 61, 1759–1765. [Google Scholar] [CrossRef]
- Li, Y.; Dieussaert, E.; Baets, R. Miniaturization of Laser Doppler vibrometers—A review. Sensors 2022, 22, 4735. [Google Scholar] [CrossRef] [PubMed]
- Rothberg, S.; Allen, M.; Castellini, P.; Maio, D.D.; Dirckx, J.; Ewins, D.; Halkon, B.; Muyshondt, P.; Paone, N.; Ryan, T.; et al. An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt. Lasers Eng. 2019, 99, 11–22. [Google Scholar] [CrossRef]
- Johansmann, M.; Siegmund, G.; Pineda, M. Targeting the Limits of Laser Doppler Vibrometry. Available online: https://www.pearl-hifi.com/06_Lit_Archive/15_Mfrs_Publications/28_Polytec/Polytec_Tech_Data/Misc_LDV/Limits_of_LDV.pdf (accessed on 11 August 2023).
- Xia, P.; Yu, H.; Zhang, Q.; Fu, Z.; Wang, X.; Wang, Y.; Jiang, X.; Yang, J. A Silicon Optical Single Sideband Modulator With Ultra-High Sideband Suppression Ratio. IEEE Photonics Technol. Lett. 2020, 32, 963–966. [Google Scholar] [CrossRef]
- Garreis, R. 90 degree optical hybrid for coherent receivers. In Optical Space Communication II; SPIE: Munich, Germany, 1991. [Google Scholar]
- Li, Y.; Zhu, J.; Duperron, M.; O’Brien, P.; Schuler, R.; Aasmul, S.; De Melis, M.; Kersemans, M.; Baets, R. Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology. Opt. Express 2018, 26, 3638–3645. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Dieussaert, E. A Compensation Method for Nonlinearity Errors in Optical Interferometry. Sensors 2023, 23, 7942. https://doi.org/10.3390/s23187942
Li Y, Dieussaert E. A Compensation Method for Nonlinearity Errors in Optical Interferometry. Sensors. 2023; 23(18):7942. https://doi.org/10.3390/s23187942
Chicago/Turabian StyleLi, Yanlu, and Emiel Dieussaert. 2023. "A Compensation Method for Nonlinearity Errors in Optical Interferometry" Sensors 23, no. 18: 7942. https://doi.org/10.3390/s23187942
APA StyleLi, Y., & Dieussaert, E. (2023). A Compensation Method for Nonlinearity Errors in Optical Interferometry. Sensors, 23(18), 7942. https://doi.org/10.3390/s23187942