Dark Current Analysis on GeSn p-i-n Photodetectors
"> Figure 1
<p>(<b>a</b>) Schematic diagram of the lattice-matched, strain-free Ge<sub>1–x</sub>Sn<sub>x</sub> <span class="html-italic">p-i-n</span> PD on a Si (001) substrate via a fully strain-relaxed, lattice-matched, compositionallygraded Ge<sub>1–x</sub>Sn<sub>x</sub> buffer layer (not to scale). Schematic band structures of (<b>b</b>) indirect-bandgap GeSn and (<b>c</b>) direct-bandgap GeSn layers.</p> "> Figure 2
<p>Calculated indirect and direct bandgaps of bulk Ge<sub>1–x</sub>Sn<sub>x</sub> as a function of the Sn concentration at <span class="html-italic">T</span> = 300 K.</p> "> Figure 3
<p>Mobility of the electrons in the (<b>a</b>) Γ-CB, (<b>b</b>) L-CB, and (<b>c</b>) holes as a function of the Sn concentration for different defect densities.</p> "> Figure 4
<p>Scattering times of the electrons in (<b>a</b>) Γ-CB, (<b>b</b>) L-CB, and (<b>c</b>) holes as a function of the Sn concentration for various defect densities.</p> "> Figure 5
<p>Illustration of dark current due to diffusion of minority carriers in homojunction GeSn PD with (<b>a</b>) indirect-bandgap and (<b>b</b>) direct-bandgap GeSn layers.</p> "> Figure 6
<p>(<b>a</b>) Minority carrier diffusion current density and its different contributing components as a function of the Sn concentration with a defect density of 10<sup>6</sup> cm<sup>−2</sup>. (<b>b</b>) Minority carrier diffusion current density as a function of the Sn concentration with various defect densities.</p> "> Figure 7
<p>Illustration of SRH dark currents in GeSn PD with (<b>a</b>) indirect-bandgap and (<b>b</b>) direct-bandgap GeSn layers.</p> "> Figure 8
<p>SRH coefficients for electrons and holes of GeSn alloys as a function of the Sn concentration.</p> "> Figure 9
<p>(<b>a</b>) SRH current density, along with its contributing components, as a function of the Sn concentration at a fixed defect density of 1 × 10<sup>6</sup> cm<sup>−2</sup>. (<b>b</b>) SRH current density as a function of the Sn concentration for various defect densities.</p> "> Figure 10
<p>Illustration of dark current due to the generation of EHPs in homojunction GeSn PD with (<b>a</b>) indirect-bandgap and (<b>b</b>) direct-bandgap Ge<sub>1–x</sub>Sn<sub>x</sub> layers.</p> "> Figure 11
<p>Calculated total absorption coefficient spectra of GeSn alloys with different Sn concentrations.</p> "> Figure 12
<p>(<b>a</b>) Radiative recombination coefficients as a function of the Sn concentration. (<b>b</b>) Different contributors and total interband generation dark current density as a function of the Sn concentration.</p> "> Figure 13
<p>Illustration of Auger dark current due to eeh and ehh processes in (<b>a</b>) indirect-bandgap and (<b>b</b>) direct-bandgap Ge<sub>1–x</sub>Sn<sub>x</sub> alloys.</p> "> Figure 14
<p>(<b>a</b>) Auger coefficients as a function of the Sn concentration. (<b>b</b>) Auger current density and its contributing components as a function of the Sn concentration.</p> "> Figure 15
<p>Illustration of TAT-related electron tunneling in Ge<sub>1–x</sub>Sn<sub>x</sub>PD with (<b>a</b>) indirect-bandgap and (<b>b</b>) direct-bandgap GeSn alloys and (<b>c</b>) hole tunneling.</p> "> Figure 16
<p>TAT enhancement factors as a function of the Sn concentration.</p> "> Figure 17
<p>(<b>a</b>) Different contributors and total TAT current density as a function of the Sn concentration with a defect density of 1 × 10<sup>6</sup> cm<sup>−2</sup>. (<b>b</b>) Total TAT current density as a function of the Sn concentration for different defect densities.</p> "> Figure 18
<p>Total dark current density and its components as a function of the Sn concentration.</p> "> Figure 19
<p>Calculated dark current density as a function of the Sn concentration for different defect densities (lines) compared with reported experimental results (scatters) at −1V bias voltage [<a href="#B31-sensors-23-07531" class="html-bibr">31</a>,<a href="#B32-sensors-23-07531" class="html-bibr">32</a>,<a href="#B33-sensors-23-07531" class="html-bibr">33</a>,<a href="#B34-sensors-23-07531" class="html-bibr">34</a>,<a href="#B35-sensors-23-07531" class="html-bibr">35</a>,<a href="#B36-sensors-23-07531" class="html-bibr">36</a>,<a href="#B37-sensors-23-07531" class="html-bibr">37</a>,<a href="#B38-sensors-23-07531" class="html-bibr">38</a>,<a href="#B39-sensors-23-07531" class="html-bibr">39</a>,<a href="#B40-sensors-23-07531" class="html-bibr">40</a>,<a href="#B42-sensors-23-07531" class="html-bibr">42</a>].</p> "> Figure 20
<p>Optical responsivity spectra of GeSn PDs with different Sn concentrations.</p> "> Figure 21
<p>Calculated detectivity spectra of Ge<sub>1–<span class="html-italic">x</span></sub>Sn<span class="html-italic"><sub>x</sub></span> PDs for (<b>a</b>) x = 0%, (<b>b</b>) x = 4%, (<b>c</b>) x = 8%, and (<b>d</b>) x = 12% with various defect densities.</p> "> Figure 22
<p>Variation in calculated detectivity as a function of the Sn concentration for different defect densities at a specified wavelength (λ<sub>p</sub> = 0.9 × λ<sub>c</sub>).</p> ">
Abstract
:1. Introduction
2. Device Structure of GeSn p-i-n PDs
3. Mobilities and Scattering Times
4. Dark Current Analysis
4.1. Diffusion Dark Current Density
4.2. SRH Dark Current Density
4.3. Generation Dark Current Density
4.4. Auger Dark Current Density
4.5. Tunneling Dark Current Density
4.6. Total Dark Current
5. Optical Responsivity Analysis
6. Detectivity Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoogeveen, R.W.M.; van der, R.J.; Goede, A.P.H. Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere. Infrared Phys. Technol. 2001, 42, 1–16. [Google Scholar] [CrossRef]
- Arslan, Y.; Oguz, F.; Besikci, C. Extended wavelength SWIR InGaAs focal plane array: Characteristics and limitations. Infrared Phys. Technol. 2015, 70, 134–137. [Google Scholar] [CrossRef]
- Long, M.; Gao, A.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y.; Liu, E.; Chen, X.; Lu, W.; et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589. [Google Scholar] [CrossRef]
- Deng, G.; Yang, W.; Gong, X.; Zhang, Y. High-performance uncooled InAsSb-based pCBn mid-infrared photodetectors. Infrared Phys. Technol. 2020, 105, 103260. [Google Scholar] [CrossRef]
- Kimukin, I.; Biyikli, N.; Kartaloglu, T.; Aytur, O.; Ozbay, E. High-Speed InSb Photodetectors on GaAs for Mid-IR Applications. IEEE J. Sel. Quantum Electron. 2004, 10, 766–770. [Google Scholar] [CrossRef]
- Martin, J.M.; Hernandez, J.L.; Adell, L.; Rodriguez, A.; Lopez, F. Arrays of thermally evaporated PbSe infrared photo-detectors deposited on Si substrates operating at room temperature. Semicond. Sci. Technol. 1996, 11, 1740. [Google Scholar] [CrossRef]
- Munoz, A.; Melendez, J.; Torquemada, M.C.; Rodrigo, M.T.; Cebrian, J.; de Castro, A.J.; Meneses, J.; Ugarte, M.; Lopez, F.; Vergara, G.; et al. PbSe photodetector arrays for IR sensors. Thin Solid Films 1998, 317, 425–428. [Google Scholar] [CrossRef]
- Kasiyan, V.; Dashevsky, Z.; Minna Schwarz, C.; Shatkhin, M.; Flitsiyan, E.; Chernyak, L.; Khokhlov, D. Infrared detectors based on semiconductor p-n junction of PbSe. J. Appl. Phys. 2012, 112, 2013–2016. [Google Scholar] [CrossRef]
- Hu, W.D.; Chen, X.S.; Ye, Z.H.; Lu, W. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification. Appl. Phys. Lett. 2011, 99, 091101. [Google Scholar] [CrossRef]
- Hu, W.; Ye, Z.; Liao, L.; Chen, H.; Chen, L.; Ding, R.; He, L.; Chen, X.; Lu, W. 128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Opt. Lett. 2014, 39, 5184–5187. [Google Scholar] [CrossRef]
- Wang, J.; Xing, Y.; Wan, F.; Fu, C.; Xu, C.H.; Liang, F.X.; Luo, L.B. Progress in ultraviolet photodetectors based on II-VI group compound semiconductors. J. Mater. Chem. C 2022, 10, 12929–12946. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.; Cui, A.; Li, Q.; He, T.; Zhang, K.; Wang, Z.; Li, Z.; Zhang, Z.; Wu, P.; et al. Fast Uncooled Mid-Wavelength Infrared Photodetectors with Heterostructures of van der Waals on Epitaxial HgCdTe. Adv. Mater. 2022, 34, 2107772. [Google Scholar] [CrossRef]
- Soref, R. Silicon-based silicon-germanium-tin heterostructure photonics. Philos. Trans. R. Soc. Lond. Ser. A 2014, 372, 20130113. [Google Scholar] [CrossRef] [PubMed]
- Deen, M.J.; Basu, P.K. Silicon Photonics: Fundamentals and Devices; Willey: Hoboken, NJ, USA, 2012. [Google Scholar]
- Michel, J.; Liu, J.; Kimerling, L.C. High-performance Ge-on-Si photodetectors. Nat. Photonics 2010, 4, 527–534. [Google Scholar] [CrossRef]
- Gupta, J.P.; Bhargava, N.; Kim, S.; Adam, T.; Kolodzey, J. Infrared electroluminescence from GeSn heterojunction diodes grown by molecular beam epitaxy. Appl. Phys. Lett. 2013, 102, 251117. [Google Scholar] [CrossRef]
- Bauer, M.; Taraci, J.; Tolle, J.; Chizmeshya, A.V.G.; Zollner, S.; Smith, D.J.; Menendez, J.; Hu, C.; Kouvetakis, J. Ge-Sn semiconductors for band-gap and lattice engineering. Appl. Phys. Lett. 2002, 81, 2992–2994. [Google Scholar] [CrossRef]
- Chizmeshy, A.V.G.; Ritter, C.; Tolle, J.; Cook, C.; Menendez, J.; Kuovetakis, J. Fundamental studies of P(GeH3)3, As(GeH3)3, and Sb(GeH3)3: Practical n-dopants for New Group IV Semiconductors. Chem. Mater. 2006, 18, 6266–6277. [Google Scholar] [CrossRef]
- Chang, G.-E.; Yu, S.-Q.; Liu, J.; Cheng, H.H.; Soref, R.A.; Sun, G. Achievable performance of uncooled homojunction GeSn mid-infrared photodetectors. IEEE J. Sel. Quantum Electron. 2022, 28, 3800611. [Google Scholar] [CrossRef]
- Soref, R. Mid-Infrared Photonics. In Optical Fiber Communication Conference (OFC); Optica Publishing Group: Los Angeles, CA, USA, 2015; W4A.4. [Google Scholar]
- Ghosh, S.; Bansal, R.; Sun, G.; Soref, R.A.; Cheng, H.H.; Chang, G.E. Design and Optimization of GeSn Waveguide Photodetectors for 2-μm Band Silicon Photonics. Sensors 2022, 22, 3978. [Google Scholar] [CrossRef]
- Mathews, J.; Roucka, R.; Xie, J.Q.; Yu, S.Q.; Menéndez, J.; Kouvetakis, J. Extended performance GeSn/Si(100) p-i-n photodetectors for full spectral range telecommunication applications. Appl. Phys. Lett. 2009, 95, 133506. [Google Scholar] [CrossRef]
- Su, S.J.; Cheng, B.W.; Xue, C.L.; Wang, W.; Cao, Q.; Xue, H.Y.; Hu, W.X.; Zhang, G.Z.; Zuo, Y.H.; Wang, Q.M. GeSn p-i-n photodetector for all telecommunication bands detection. Opt. Express 2011, 19, 6400–6405. [Google Scholar] [CrossRef]
- Roucka, R.; Mathews, J.; Weng, C.G.; Beeler, R.; Tolle, J.; Menéndez, J.; Kouvetakis, J. High-Performance Near-IR Photodiodes: A Novel Chemistry-Based Approach to Ge and Ge–Sn Devices Integrated on Silicon. IEEE J. Quantum Electron. 2011, 47, 213–222. [Google Scholar] [CrossRef]
- Xu, S.; Huang, Y.C.; Lee, K.H.; Wang, W.; Dong, Y.; Lei, D.; Panah, S.; Tan, C.S.; Gong, X.; Yeo, Y.C. GeSn lateral p-i-n pho-todetector on insulating substrate. Opt. Express 2018, 26, 17312–17321. [Google Scholar] [CrossRef]
- Senaratne, C.L.; Wallace, P.M.; Gallagher, J.D.; Sims, P.E.; Kouvetakis, J.; Menéndez, J. Direct gap Ge1-ySny alloys: Fabrication and design of mid-IR photodiodes. J. Appl. Phys. 2016, 120, 25701. [Google Scholar] [CrossRef]
- Gong, X.; Dong, Y.; Xu, S.Q.; Wang, W. Germanium-tin (Ge1–xSnx) photodetectors for 2 µm wavelength band. Jpn. J. Appl. Phys. 2021, 60, SB0805. [Google Scholar] [CrossRef]
- Tran, H.; Pham, T.; Margetis, J.; Zhou, Y.; Dou, W.; Grant, P.C.; Grant, J.M.; Alkabi, S.; Du, W.; Sun, G.; et al. Study of high performance GeSn photodetectors with cutoff wavelength up to 3.7 µm for low–cost infrared imaging. In Proceedings of the CLEO: Science and Innovations 2019, San Jose, CA, USA, 5–10 May 2019; pp. 1–2. [Google Scholar]
- Ghosh, S.; Kumar, H.; Mukhopadhyay, B.; Chang, G.-E. Design and Modeling of High-Performance DBR-Based Resonant-Cavity-Enhanced GeSn Photodetector for Fiber-Optic Telecommunication Networks. IEEE Sens. J. 2021, 21, 9900–9908. [Google Scholar] [CrossRef]
- McCarthy, T.T.; Ju, Z.; Schaefer, S.; Yu, S.-Q.; Zhang, Y.-H. Momentum (k)-space carrier separation using SiGeSn alloys for photodetector applications. J. Appl. Phys. 2021, 130, 223102. [Google Scholar] [CrossRef]
- Oehme, M.; Kostecki, K.; Ye, K.H.; Bechler, S.; Ulbricht, K.; Schmid, M.; Kaschel, M.; Gollhofer, M.; Körner, R.; Zhang, W.G.; et al. GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz. Opt. Express 2014, 22, 839–846. [Google Scholar]
- Dong, Y.; Wang, W.; Lei, D.; Gong, X.; Zhou, Q.; Lee, S.Y.; Loke, W.K.; Yoon, S.-F.; Tok, E.S.; Liang, G.C.; et al. Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique. Opt. Express 2015, 23, 18611. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Chang, G.-E.; Li, H.; Cheng, H.H. Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer. Opt. Lett. 2017, 42, 1652–1655. [Google Scholar] [CrossRef]
- Tran, H.; Pham, T.; Du, W.; Zhang, Y. High performance Ge0.89Sn0.11 photodiodes for lowcost shortwave infrared imaging. J. Appl. Phys. 2018, 124, 013101. [Google Scholar] [CrossRef]
- Xu, S.; Wang, W.; Huang, Y.C.; Dong, Y.; Masudy-Panah, S.; Wang, H.; Gong, X.; Yeo, Y.C. High-speed photo detection at two-micron-wavelength: Technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate. Opt. Express 2019, 27, 5798–5813. [Google Scholar] [CrossRef]
- Tran, H.; Littlejohns, C.G.; Thomson, D.J.; Pham, T.; Ghetmiri, A.; Mosleh, A.; Margetis, J.; Tolle, J.; Mashanovich, G.Z.; Du, W.; et al. Study of GeSn Mid-infrared Photodetectors for High Frequency Applications. Front. Mater. 2019, 6, 1–7. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, N.; Yu, K.; Zhang, X.M. High performance silicon-based GeSn p–i–n photodetectors for short-wave infrared application. Chin. Phys. B 2019, 28, 128501. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, S.; Wu, S.; Huang, Y.C.; Zhao, P.; Tong, J.; Son, B.; Guo, X.; Zhang, D.; Gong, X.; et al. Photo detection and modulation from 1,550 to 2,000 nm realized by a GeSn/Ge multiple-quantum-well photodiode on a 300-mm Si substrate. Opt. Express 2020, 28, 34772–34786. [Google Scholar] [CrossRef]
- Wang, N.; Xue, C.L.; Wan, F.S.; Zhao, Y.; Xu, G.Y.; Liu, Z.; Zheng, J.; Zuo, Y.H.; Chne, B.W.; Wang, Q.M. High-performance GeSn photodetector covering all telecommunication bands. IEEE Photon. J. 2021, 13, 6800809. [Google Scholar] [CrossRef]
- Li, M.; Zheng, J.; Liu, X.; Zhu, Y.; Niu, C.; Pang, Y.; Liu, Z.; Zuo, Y.; Cheng, B. Sn composition graded GeSn photodetectors on Si substrate with cutoff wavelength of 3.3 μm for mid-infrared Si photonics. Appl. Phys. Lett. 2022, 120, 121103. [Google Scholar] [CrossRef]
- Nawwar, M.A.; Ghazala, M.S.A.; El-Deen, L.M.S.; El-Shaer, A.; Anis, B.; Kashyout, A.E.H.B. Toward white light random lasing emission based on strained nanopolygermaniumdoped with tin via metal-induced crystallization (MIC). Cryst. Growth Des. 2022, 23, 751–768. [Google Scholar] [CrossRef]
- Atalla, M.R.M.; Assali, S.; Koelling, S.; Attiaoui, A.; Moutanabbir, O. Dark current in monolithic extended-SWIR GeSn PIN photodetectors. Appl. Phys. Lett. 2023, 122, 031103. [Google Scholar] [CrossRef]
- Nawwar, M.A.; Ghazala, M.S.; El-Deen, L.M.S.; Anis, B.; El-Shaer, A.; Elseman, A.M.; Rashad, M.M.; Kashyout, A.E.H.B. Controlling barrier height and spectral responsivity of p-i-n based GeSn photodetectors via arsenic incorporation. RSC Adv. 2023, 13, 9154–9167. [Google Scholar] [CrossRef]
- Karthik, R.; Sathyakam, P.U.; Mallick, P.S. Effect of dislocation scattering on electron mobility in GaN. Nat. Sci. 2011, 3, 812–815. [Google Scholar]
- Ghosh, S.; Leonhardt, D.; Han, S.M. Effect of threading dislocation density and dielectric layer on temperature-dependent electrical characteristics of high-hole mobility metal semiconductor field effect transistors fabricated from wafer-scale epi-taxially grown p-type germanium on silicon substrates. J. Appl. Phys. 2014, 115, 094507. [Google Scholar]
- Wang, Z.; Liu, J.; Wang, W.; Chen, H.; Liu, Z.; Yu, Q.; Zeng, H.; Sun, L. Aqueous phase preparation of graphene with low defect density and adjustable layers. Chem. Commun. 2013, 49, 10835. [Google Scholar] [CrossRef]
- Song, Z.; Fan, W.; Tan, C.S.; Wang, Q.; Nam, D.; Sun, G. Band structure of Ge1–xSnx alloy: A full-zone 30-band k·p model. New. J. Phys. 2020, 21, 073037. [Google Scholar] [CrossRef]
- Chen, H.; Verheyen, P.; De Heyn, P.; Lepage, G.; De Coster, J.; Balakrishnan, S.; Absil, P.; Roelkens, G.; Van Campenhout, J. Dark current analysis in high–speed germanium p–i–n waveguide photodetectors. J. Appl. Phys. 2016, 119, 213105. [Google Scholar] [CrossRef]
- Chang, G.-E.; Chang, S.-W.; Chuang, S.L. Strain-Balanced GezSn1-z-SixGeySn1-x-y Multiple-Quantum-Well Lasers. IEEE J. Quantum Electron. 2010, 46, 1813–1820. [Google Scholar] [CrossRef]
- Giovane, L.M.; Luan, H.-C.; Agarwal, A.M.; Kimerling, L.C. Correlation between leakage current density and threading dislocation density in SiGe p-i-n diodes grown on relaxed graded buffer layers. Appl. Phys. Lett. 2001, 78, 541. [Google Scholar] [CrossRef]
- Scajev, P.; Soriute, V.; Kreiza, G.; Malinauskas, T.; Stanionyte, S.; Onufrijevs, P.; Medvids, A.; Cheng, H.-H. Temperature dependent carrier lifetime, diffusion coefficient, and diffusion length in Ge0.95Sn0.05 epilayer. J. Appl. Phys. 2020, 128, 115103. [Google Scholar] [CrossRef]
- Gupta, S.; Simoen, E.; Loo, R.; Shimura, Y.; Porret, C.; Gencarelli, F.; Paredis, K.; Bender, H.; Lauwaert, J.; Vrielinck, H.; et al. Electrical properties of extended defects in strain relaxed GeSn. Appl. Phys. Lett. 2018, 113, 022102. [Google Scholar] [CrossRef]
- Chuang, S.L. Physics of Photonic Devices, 2nd ed.; Willey: Hoboken, NJ, USA, 2012. [Google Scholar]
- Schubert, E.F. Light-Emitting Diodes, 2nd ed.; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Grzybowski, G.; Roucka, R.; Mathews, J.; Jiang, L.; Beeler, R.T.; Kouvetakis, J.; Menendez, J. Direct versus indirect optical recombination in Ge films grown on Si substrates. Phys. Rev. B 2011, 84, 205307. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X.; Pan, D.; Wang, X.; Kimerling, L.C.; Koch, T.L.; Michel, J. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express 2007, 15, 11272–11277. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Soref, R.A.; Cheng, H.-H. Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure mid-infrared laser. J. Appl. Phys. 2010, 108, 033107. [Google Scholar] [CrossRef]
- Son, B.; Lin, Y.; Lee, K.H.; Chen, Q.; Tan, C.S. Dark current analysis of germanium-on-insulator vertical p-i-n photodetectors with varying threading dislocation density. J. Appl. Phys. 2020, 127, 203105. [Google Scholar] [CrossRef]
- Hurkx, G.A.M.; Klaassen, D.B.M.; Knuvers, M.P.G. A New Recombination Model for Device Simulation Including Tunneling. IEEE Trans. Electron Dev. 1992, 39, 331–338. [Google Scholar] [CrossRef]
- Ghosh, S.; Bhattacharyya, A.; Sen, G.; Mukhopadhyay, B. Optimization of different structural parameters of GeSn/SiGeSn Quantum Well Infrared Photodetectors (QWIPs) for low dark current and high responsivity. J. Comp. Electron. 2021, 20, 1224–1233. [Google Scholar] [CrossRef]
Radiative Recombination Coefficients (cm3 s–1) | Pure Ge [56] | This Work |
---|---|---|
Direct bandgap | 1.3 × 10–10 | 1.75 × 10–10 |
Indirect bandgap | 5.1 × 10–15 | 5.2 × 10–15 |
Auger Generation–Recombination Coefficients (cm6 s–1) | Pure Ge [56] | This Work |
---|---|---|
Γ-valley eeh | – | 2.62 × 10–33 |
L-valley eeh ehh | 3.0 × 10–32 7.0 × 10–32 | 3.15 × 10–32 7.31 × 10–32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, S.; Sun, G.; Morgan, T.A.; Forcherio, G.T.; Cheng, H.-H.; Chang, G.-E. Dark Current Analysis on GeSn p-i-n Photodetectors. Sensors 2023, 23, 7531. https://doi.org/10.3390/s23177531
Ghosh S, Sun G, Morgan TA, Forcherio GT, Cheng H-H, Chang G-E. Dark Current Analysis on GeSn p-i-n Photodetectors. Sensors. 2023; 23(17):7531. https://doi.org/10.3390/s23177531
Chicago/Turabian StyleGhosh, Soumava, Greg Sun, Timothy A. Morgan, Gregory T. Forcherio, Hung-Hsiang Cheng, and Guo-En Chang. 2023. "Dark Current Analysis on GeSn p-i-n Photodetectors" Sensors 23, no. 17: 7531. https://doi.org/10.3390/s23177531
APA StyleGhosh, S., Sun, G., Morgan, T. A., Forcherio, G. T., Cheng, H.-H., & Chang, G.-E. (2023). Dark Current Analysis on GeSn p-i-n Photodetectors. Sensors, 23(17), 7531. https://doi.org/10.3390/s23177531