“GeSn Rule-23”—The Performance Limit of GeSn Infrared Photodiodes
<p>Schematic diagram of normal-incidence GeSn <span class="html-italic">p</span>−<span class="html-italic">i</span>−<span class="html-italic">n</span> homojunction photodetector on a Si (001) substrate with a GeSn virtual substrate.</p> "> Figure 2
<p>Calculated cutoff wavelength versus operation temperature for GeSn PDs with different Sn contents.</p> "> Figure 3
<p>Calculated GeSn−rule−23 performance for GeSn PDs. (<b>a</b>) Calculated dark current density as a function of temperature. (<b>b</b>) Calculated dark current density at <span class="html-italic">T</span> = 300 K for GeSn PDs as a function of Sn content. Experimental dark current densities taken from Refs. [<a href="#B9-sensors-23-07386" class="html-bibr">9</a>,<a href="#B10-sensors-23-07386" class="html-bibr">10</a>,<a href="#B11-sensors-23-07386" class="html-bibr">11</a>,<a href="#B12-sensors-23-07386" class="html-bibr">12</a>,<a href="#B13-sensors-23-07386" class="html-bibr">13</a>,<a href="#B14-sensors-23-07386" class="html-bibr">14</a>,<a href="#B15-sensors-23-07386" class="html-bibr">15</a>,<a href="#B16-sensors-23-07386" class="html-bibr">16</a>,<a href="#B17-sensors-23-07386" class="html-bibr">17</a>,<a href="#B18-sensors-23-07386" class="html-bibr">18</a>,<a href="#B19-sensors-23-07386" class="html-bibr">19</a>,<a href="#B20-sensors-23-07386" class="html-bibr">20</a>,<a href="#B21-sensors-23-07386" class="html-bibr">21</a>,<a href="#B22-sensors-23-07386" class="html-bibr">22</a>,<a href="#B23-sensors-23-07386" class="html-bibr">23</a>,<a href="#B24-sensors-23-07386" class="html-bibr">24</a>] are also shown for comparison. Calculated (<b>c</b>) dark current density, and (<b>d</b>) <span class="html-italic">R</span><sub>0</sub><span class="html-italic">A</span> product of the GeSn PDs as a function of cutoff wavelength in the temperature range of <span class="html-italic">T</span> = 200–300 K. (<b>e</b>) Calculated GeSn−rule−23 performance by means of dark current density as a function reciprocal of the product cutoff wavelength and temperature (solid lines) compared with reported experimental data (scatters) in the literature [<a href="#B9-sensors-23-07386" class="html-bibr">9</a>,<a href="#B10-sensors-23-07386" class="html-bibr">10</a>,<a href="#B11-sensors-23-07386" class="html-bibr">11</a>,<a href="#B12-sensors-23-07386" class="html-bibr">12</a>,<a href="#B13-sensors-23-07386" class="html-bibr">13</a>,<a href="#B14-sensors-23-07386" class="html-bibr">14</a>,<a href="#B15-sensors-23-07386" class="html-bibr">15</a>,<a href="#B16-sensors-23-07386" class="html-bibr">16</a>,<a href="#B17-sensors-23-07386" class="html-bibr">17</a>,<a href="#B18-sensors-23-07386" class="html-bibr">18</a>,<a href="#B19-sensors-23-07386" class="html-bibr">19</a>,<a href="#B20-sensors-23-07386" class="html-bibr">20</a>,<a href="#B21-sensors-23-07386" class="html-bibr">21</a>,<a href="#B22-sensors-23-07386" class="html-bibr">22</a>,<a href="#B23-sensors-23-07386" class="html-bibr">23</a>,<a href="#B24-sensors-23-07386" class="html-bibr">24</a>]. MCT rule−07 (dashed−dotted line) [<a href="#B26-sensors-23-07386" class="html-bibr">26</a>] and IGA−rule−17 (dashed line) [<a href="#B27-sensors-23-07386" class="html-bibr">27</a>] and are also depicted for comparison.</p> "> Figure 4
<p>Calculated absorption coefficient spectra of GeSn alloys with Sn contents of (<b>a</b>) <span class="html-italic">x</span> = 0%, (<b>b</b>) <span class="html-italic">x</span> = 10%, and (<b>c</b>) <span class="html-italic">x</span> = 20% in the temperature range of <span class="html-italic">T</span> = 200–300 K.</p> "> Figure 5
<p>Calculated responsivity spectra of GeSn PDs with Sn contents of (<b>a</b>) <span class="html-italic">x</span> = 0%, (<b>b</b>) <span class="html-italic">x</span> = 10%, and (<b>c</b>) <span class="html-italic">x</span> = 20% in the temperature range of <span class="html-italic">T</span> = 200–300 K.</p> "> Figure 6
<p>(<b>a</b>) Calculated specific detectivity spectra of GeSn PDs with various Sn contents at <span class="html-italic">T</span> = 300 K. (<b>b</b>) Calculated specific detectivity spectra for Ge<sub>0.9</sub>Sn<sub>0.1</sub> PD in the temperature range of <span class="html-italic">T</span> = 200–300 K. (<b>c</b>) Calculated peak detectivity and NEP as a function of cutoff wavelength in the temperature range of <span class="html-italic">T</span> = 200–300 K.</p> "> Figure 7
<p>Calculated (<b>a</b>) Γ–CB, (<b>b</b>) L-CB electron and (<b>c</b>) hole saturation velocities as a function of Sn content in the temperature range of <span class="html-italic">T</span> = 200–300 K.</p> "> Figure 8
<p>(<b>a</b>) Calculated transit-time-delay-limited bandwidth, RC-delay-limited bandwidth, and 3-dB bandwidth of GeSn PDs as a function of Sn content at <span class="html-italic">T</span> = 300 K. (<b>b</b>) Calculated 3-dB bandwidth and response time as a function of Sn content at various temperatures.</p> ">
Abstract
:1. Introduction
2. GeSn Device Structure
3. Temperature-Dependent Bandgap Energies and Cutoff Wavelength
4. Dark Current Density and GeSn-Rule 23
5. Temperature-Dependent Optical Absorption and Responsivity
6. Temperature-Dependent Detectivity and Noise-Equivalent Power
7. Temperature-Dependent Bandwidth
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soref, R. The Past, Present, and Future of Silicon Photonics. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 1678–1687. [Google Scholar] [CrossRef]
- Soref, R. Mid-Infrared Photonics. In Proceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, CA, USA, 22–26 March 2015. [Google Scholar]
- Chang, C.; Li, H.; Ku, C.T.; Yang, S.G.; Cheng, H.H.; Hendrickson, J.; Soref, R.A.; Sun, G. Ge0.975Sn0.025 320 × 256 imager chip for 1.6–1.9 μm infrared vision. Appl. Opt. 2016, 55, 10170–10173. [Google Scholar] [CrossRef]
- Tran, H.; Pham, T.; Margetis, J.; Zhou, Y.; Dou, W.; Grant, P.C.; Grant, J.M.; Al-Kabi, S.; Sun, G.; Soref, R.A.; et al. Si-based GeSn photodetectors toward mid-infrared imaging applications. ACS Photon. 2019, 6, 2807–2815. [Google Scholar] [CrossRef]
- Soref, R.A.; Perry, C.H. Predicted band gap of the new semiconductor SiGeSn. J. Appl. Phys. 1991, 69, 539–541. [Google Scholar] [CrossRef]
- Chang, G.E.; Basu, R.; Mukhopadhyay, B.; Basu, P.K. Design and modeling of GeSn-based heterojunction phototransistors for communication applications. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 425–433. [Google Scholar] [CrossRef]
- McCarthy, T.T.; Ju, Z.; Schaefer, S.; Yu, S.Q.; Zhang, Y.H. Momentum(k)-space carrier separation using SiGeSn alloys for photodetector applications. J. Appl. Phys. 2021, 130, 223102. [Google Scholar] [CrossRef]
- Chang, G.E.; Yu, S.Q.; Liu, J.; Cheng, H.H.; Soref, R.A.; Sun, G. Achievable performance of uncooled homojunction GeSn mid-infrared photodetectors. IEEE J. Sel. Quantum Electron. 2021, 28, 3800611. [Google Scholar] [CrossRef]
- Mathews, J.; Roucka, R.; Xie, J.; Yu, S.Q.; Menéndez, J.; Kouvetakis, J. Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications. Appl. Phys. Lett. 2009, 95, 133506. [Google Scholar] [CrossRef]
- Werner, J.; Oehme, M.; Schmid, M.; Kaschel, M.; Schirmer, A.; Kasper, E.; Schulze, J. Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy. Appl. Phys. Lett. 2011, 98, 061108. [Google Scholar] [CrossRef]
- Su, S.; Cheng, B.; Xue, C.; Wang, W.; Cao, Q.; Xue, H.; Hu, W.; Zhang, G.; Zuo, Y.; Wang, Q. GeSn p-i-n photodetector for all telecommunication bands detection. Opt. Exp. 2011, 19, 6400–6405. [Google Scholar] [CrossRef]
- Oehme, M.; Schmid, M.; Kaschel, M.; Gollhofer, M.; Widmann, D.; Kasper, E.; Schulze, J. GeSn p-i-n detectors integrated on Si with up to 4% Sn. Appl. Phys. Lett. 2012, 101, 141110. [Google Scholar] [CrossRef]
- Tseng, H.H.; Li, H.; Mashanov, V.; Yang, Y.J.; Cheng, H.H.; Chang, G.E.; Soref, R.A.; Sun, G. GeSn-based p-i-n photodiodes with strained active layer on a Si wafer. Appl. Phys. Lett. 2013, 103, 231907. [Google Scholar] [CrossRef]
- Zhang, D.; Xue, C.; Cheng, B.; Su, S.; Liu, Z.; Zhang, X.; Zhang, G.; Li, C.; Wang, Q. High-responsivity GeSn short-wave infrared pi-n photodetectors. Appl. Phys. Lett. 2013, 102, 141111. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, W.; Lei, D.; Gong, X.; Zhou, Q.; Lee, S.Y.; Loke, W.K.; Yoon, S.F.; Tok, E.S.; Liang, G.; et al. Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique. Opt. Exp. 2015, 23, 18611–18619. [Google Scholar] [CrossRef]
- Chang, C.; Li, H.; Huang, S.H.; Cheng, H.H.; Sun, G.; Soref, R.A. Sn-based Ge/Ge0.975Sn0.025/Ge p-i-n photodetector operated with back-side illumination. Appl. Phys. Lett. 2016, 108, 151101. [Google Scholar] [CrossRef]
- Cong, H.; Xue, C.; Zheng, J.; Yang, F.; Yu, K.; Liu, Z.; Zhang, X.; Cheng, B.; Wang, Q. Silicon based GeSn p-i-n photodetector for SWIR detection. IEEE Photon. J. 2016, 8, 6804706. [Google Scholar] [CrossRef]
- Pham, T.; Du, W.; Tran, H.; Margetis, J.; Tolle, J.; Sun, G.; Soref, R.A.; Naseem, H.A.; Li, S.Q.; Yu, S.Q. Systematic study of Si-based GeSn photodiodes with 2.6 μm detector cutoff for short-wave infrared detection. Opt. Exp. 2016, 25, 4519–4531. [Google Scholar] [CrossRef]
- Tran, H.; Pham, T.; Du, W.; Zhang, Y.; Grant, P.C.; Grant, J.M.; Sun, G.; Soref, R.A.; Margetis, J.; Tolle, J.; et al. High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging. J. Appl. Phys. 2018, 124, 01310. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, N.; Yu, K.; Zhang, X.; Li, X.; Zheng, J.; Xue, C.; Cheng, B.; Li, C. High performance silicon-based GeSn p–i–n photodetectors for short-wave infrared application. Chin. Phys. B 2019, 28, 128501. [Google Scholar] [CrossRef]
- Wang, N.; Xue, C.; Wan, F.; Zhao, Y.; Xu, G.; Liu, Z.; Zheng, J.; Zuo, Y.; Cheng, B.; Wang, Q. High-Performance GeSn Photodetector Covering All Telecommunication Bands. IEEE Photon. J. 2021, 13, 6800809. [Google Scholar] [CrossRef]
- Li, X.; Peng, L.; Liu, Z.; Zhou, Z.; Zheng, J.; Xue, C.; Zuo, Y.; Chen, B.; Cheng, B. 30 GHz GeSn photodetector on SOI substrate for 2 µm wavelength application. Photon. Res. 2021, 9, 494–500. [Google Scholar] [CrossRef]
- Simola, E.T.; Kiyek, V.; Ballabio, A.; Schlykow, V.; Frigerio, J.; Zucchetti, C.C.; Iacovo, A.D.; Colace, L.; Yamamoto, Y.; Capellini, G.; et al. CMOS-compatible bias-tunable dual-band detector based on GeSn/Ge/Si coupled photodiodes. ACS Photon. 2021, 8, 2166–2173. [Google Scholar] [CrossRef]
- Li, M.; Zheng, J.; Liu, X.; Zhu, Y.; Niu, C.; Pang, Y.; Liu, Z.; Zuo, Y.; Cheng, B. Sn composition graded GeSn photodetectors on Si substrate with cutoff wavelength of 3.3 μm for mid-infrared Si photonics. Appl. Phys. Lett. 2022, 120, 121103. [Google Scholar] [CrossRef]
- Atalla, M.R.; Assali, S.; Attiaoui, A.; Leduc, C.L.; Kumar, A.; Abdi, S. All-Group IV transferable membrane mid-infrared photodetectors. Adv. Funct. Mater. 2021, 31, 2006329. [Google Scholar] [CrossRef]
- Tennant, W.E.; Lee, D.; Zandian, M.; Piquette, E.; Carmody, M. MBE HgCdTe technology: A very general solution to IR detection, described by ‘rule 07′, a very convenient heuristic. J. Electron. Mater. 2008, 37, 1406–1410. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Gu, Y.; Chen, X.Y.; Ma, Y.J.; Li, X.; Shao, X.M.; Gong, H.M.; Fang, J.X. IGA-rule 17 for performance estimation of wavelength-extended InGaAs photodetectors: Validity and limitations. Appl. Opt. 2018, 57, D141–D144. [Google Scholar] [CrossRef] [PubMed]
- Hernández Acosta, M.A.; Trejo-Valdez, M.; Castro, J.; Torres San Miguel, C.; Martínez Gutiérrez, H.; Torres Torres, C. Chaotic signatures of photoconductive Cu2ZnSnS4 nanostructures explored by Lorenz attractors. New J. Phys. 2018, 20, 023048. [Google Scholar] [CrossRef]
- Chang, G.E.; Chang, S.W.; Chuang, S.L. Strain-balanced GezSn1−z–SixGeySn1−x−y multiple-quantum-well lasers. IEEE J. Quantum Electron. 2010, 46, 1813–1820. [Google Scholar] [CrossRef]
- Bertrand, M.; Thai, Q.M.; Chrétien, J.; Pauc, N.; Aubin, J.; Milord, L.; Gassenq, A.; Hartmann, J.M.; Chelnokov, A.; Calvo, V.; et al. Experimental Calibration of Sn-Related Varshni Parameters for High Sn Content GeSn Layers. Ann. Phys. 2019, 531, 1800396. [Google Scholar] [CrossRef]
- Chuang, S.L. Physics of Photonic Devices, 2nd ed.; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Streetman, B.G.; Banerjee, S.K. Solid State Electronic Devices, 6th ed.; Pearson: Hoboken, NJ, USA, 2006. [Google Scholar]
- Song, Z.; Fan, W.; Tan, C.S.; Wang, Q.; Nam, D.; Zhang, D.H.; Sun, G. Band structure of Ge1−x Snx alloy: A full-zone 30-band k·p model. New J. Phys. 2019, 21, 073037. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Sen, G.; Basu, R.; Mukhopadhyay, S.; Basu, P.K. Prediction of large enhancement of electron mobility in direct gap Ge1−xSnx alloy. Phys. Status Solidi B. 2017, 254, 170024. [Google Scholar] [CrossRef]
- Sau, J.P.; Cohen, M.L. Possibility of increased mobility in Ge–Sn alloy system. Phys. Rev. B. 2007, 75, 045208. [Google Scholar] [CrossRef]
- Fischetti, M.V.; Laux, S.E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 1996, 80, 2234–2252. [Google Scholar] [CrossRef]
- Hilsum, C. Simple empirical relationship between mobility and carrier concentration. Electron. Lett. 1974, 13, 259–260. [Google Scholar] [CrossRef]
- Sze, S.M.; Irvin, J.C. Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300◦K. Solid State Electron. 1968, 11, 599–602. [Google Scholar] [CrossRef]
- Michalczewski, K.; Martyniuk, P.; Kubiszyn, Ł.; Wu, C.H.; Wu, Y.R.; Jureńczyk, J.; Rogalski, A.; Piotrowski, J. Demonstration of the very long wavelength infrared type-II superlattice InAs/InAsSb GaAs immersed photodetector operating at thermoelectric cooling. IEEE Electron Device Lett. 2019, 40, 1396–1398. [Google Scholar] [CrossRef]
- Chang, G.E.; Cheng, H.H. Optical gain of germanium infrared lasers on different crystal orientations. J. Phys. D: Appl. Phys. 2013, 46, 065103. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, H.; Mukhopadhyay, B.; Chang, G.E. Design and Modeling of High-Performance DBR-Based Resonant-Cavity-Enhanced GeSn Photodetector for Fiber-Optic Telecommunication Networks. IEEE Sens. J. 2021, 21, 9900–9908. [Google Scholar] [CrossRef]
- Ghosh, S.; Bansal, R.; Sun, G.; Soref, R.A.; Cheng, H.-H.; Chang, G.E. Design and Optimization of GeSn Waveguide Photodetectors for 2-μm Band Silicon Photonics. Sensors 2022, 22, 3978. [Google Scholar] [CrossRef]
- Takata, I. A simple new model for the saturation velocity and the voltage dependency of leakage current. In Proceedings of the 9th International Symposium on Power Semiconductor Devices and IC’s, Weimar, Germany, 26–29 May 1997. [Google Scholar] [CrossRef]
- Quay, R.; Moglestue, C.; Palankovski, V.; Selberherr, S. A temperature dependent model for the saturation velocity in semiconductor materials. Mater. Sci. Semicond. Process. 2000, 3, 149–155. [Google Scholar] [CrossRef]
- Frey, B.J.; Leviton, D.B.; Madison, T.J. Temperature-dependent refractive index of silicon and germanium. In Proceedings of the SPIE, Orlando, FL, USA; 2006. [Google Scholar] [CrossRef]
- He, M.; Xu, Z.; Zhao, C.; Gao, Y.; Ke, K.; Liu, N.; Yao, X.; Kang, F.; Shen, Y.; Lin, L.; et al. Sn-Based Self-Powered Ultrafast Perovskite Photodetectors with Highly Crystalline Order for Flexible Imaging Applications. Adv. Funct. Mater. 2023, 33, 2300282. [Google Scholar] [CrossRef]
Symbol | Ge | Sn |
---|---|---|
(eV) | 0.89 | −0.39 |
α (eV K−1) | ||
β (K) | 296 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, G.-E.; Yu, S.-Q.; Sun, G. “GeSn Rule-23”—The Performance Limit of GeSn Infrared Photodiodes. Sensors 2023, 23, 7386. https://doi.org/10.3390/s23177386
Chang G-E, Yu S-Q, Sun G. “GeSn Rule-23”—The Performance Limit of GeSn Infrared Photodiodes. Sensors. 2023; 23(17):7386. https://doi.org/10.3390/s23177386
Chicago/Turabian StyleChang, Guo-En, Shui-Qing Yu, and Greg Sun. 2023. "“GeSn Rule-23”—The Performance Limit of GeSn Infrared Photodiodes" Sensors 23, no. 17: 7386. https://doi.org/10.3390/s23177386
APA StyleChang, G.-E., Yu, S.-Q., & Sun, G. (2023). “GeSn Rule-23”—The Performance Limit of GeSn Infrared Photodiodes. Sensors, 23(17), 7386. https://doi.org/10.3390/s23177386