Investigation of the Impact of Damaged Smartphone Sensors’ Readings on the Quality of Behavioral Biometric Models
<p>Data exchange pipeline for the behavioral biometry security system.</p> "> Figure 2
<p>The user choice rules pipeline.</p> "> Figure 3
<p>Exemplary user data on average accelerometer readings (<b>a</b>) and standard deviation of gyroscope readings (<b>b</b>) from 20-second intervals.</p> "> Figure 4
<p>Feature importance of aggregated data (averages, standard deviations, medians, and amplitudes) of the <span class="html-italic">x</span>, <span class="html-italic">y</span>, and <span class="html-italic">z</span> axes of the accelerometer and gyroscope readings.</p> "> Figure 5
<p>Average (<b>a</b>) and standard deviation (<b>b</b>) of accelerometers’ <span class="html-italic">x</span> and <span class="html-italic">y</span> axes (all users).</p> "> Figure 6
<p>Average (<b>a</b>) and standard deviation (<b>b</b>) of gyroscopes’ <span class="html-italic">x</span> and <span class="html-italic">y</span> axes (all users).</p> "> Figure 7
<p>Flow chart representing the XGBoost classifier hyperparameter optimization process.</p> "> Figure 8
<p>Exemplary hyperparameter child genotype from the evolutionary algorithm.</p> "> Figure 9
<p>Model quality distribution for all users—objective function (<b>a</b>) and ROC-AUC (<b>b</b>).</p> "> Figure 10
<p>User sensitivity histogram with undamaged data (<b>a</b>) and data without accelerometer axis <span class="html-italic">z</span> (<b>b</b>).</p> "> Figure 11
<p>User specificity histogram with undamaged data (<b>a</b>) and data without accelerometer axis <span class="html-italic">z</span> (<b>b</b>).</p> "> Figure 12
<p>Prediction quality assessment pipeline proposal.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Structure
2.2. Data Preparation
2.3. XGBoost Training
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Internet Crime Report. Internet Crime Complaint Center (IC3). 2020. Available online: https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf (accessed on 1 November 2022).
- Desolda, G.; Ferro, L.S.; Marrella, A.; Catarci, T.; Costabile, M.F. Human Factors in Phishing Attacks: A Systematic Literature Review. ACM Comput. Surv. 2022, 54, 173. [Google Scholar] [CrossRef]
- Alkhalil, Z.; Hewage, C.; Nawaf, L.; Khan, I. Phishing Attacks: A Recent Comprehensive Study and a New Anatomy. Front. Comput. Sci. 2021, 3, 563060. [Google Scholar] [CrossRef]
- Shahbaznezhad, H.; Kolini, F.; Rashidirad, M. Employees’ Behavior in Phishing Attacks: What Individual, Organizational, and Technological Factors Matter? J. Comput. Inf. Syst. 2021, 61, 539–550. [Google Scholar] [CrossRef]
- Aneke, J.; Ardito, C.; Desolda, G. Help the User Recognize a Phishing Scam: Design of Explanation Messages in Warning Interfaces for Phishing Attacks. In Proceedings of the International Conference on Human-Computer Interaction, Málaga, Spain, 22–24 September 2021; Springer: Cham, Switzerland, 2021; pp. 403–416. [Google Scholar] [CrossRef]
- Majumder, S.; Deen, M.J. Smartphone Sensors for Health Monitoring and Diagnosis. Sensors 2019, 19, 2164. [Google Scholar] [CrossRef] [Green Version]
- Falkowski-Gilski, P. On the Consumption of Multimedia Content Using Mobile Devices: A Year to Year User Case Study. Arch. Acoust. 2020, 45, 321–328. [Google Scholar] [CrossRef]
- Teh, P.S.; Teoh, A.B.J.; Yue, S. A Survey of Keystroke Dynamics Biometrics. Sci. World J. 2013, 2013, 408280. [Google Scholar] [CrossRef] [Green Version]
- Stylios, I.; Kokolakis, S.; Thanou, O.; Chatzis, S. Behavioral biometrics & continuous user authentication on mobile devices: A survey. Inf. Fusion 2021, 66, 76–99. [Google Scholar] [CrossRef]
- Sahdev, S.L.; Singh, S.; Kaur, N.; Siddiqui, L. Behavioral Biometrics for Adaptive Authentication in Digital Banking—Guard Against Flawless Privacy. In Proceedings of the 2021 International Conference on Innovative Practices in Technology and Management (ICIPTM), Noida, India, 17–19 February 2021; pp. 261–265. [Google Scholar] [CrossRef]
- Almalki, S.; Assery, N.; Roy, K. An Empirical Evaluation of Online Continuous Authentication and Anomaly Detection Using Mouse Clickstream Data Analysis. Appl. Sci. 2021, 11, 6083. [Google Scholar] [CrossRef]
- Ometov, A.; Bezzateev, S.; Mäkitalo, N.; Andreev, S.; Mikkonen, T.; Koucheryavy, Y. Multi-Factor Authentication: A Survey. Cryptography 2018, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Chalhoub, G.; Flechais, I.; Nthala, N.; Abu-Salma, R.; Tom, E. Factoring User Experience into the Security and Privacy Design of Smart Home Devices: A Case Study. In Proceedings of the Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020. [Google Scholar] [CrossRef]
- Matsuoka, K.; Irvan, M.; Kobayashi, R.; Yamaguchi, R.S. A Score Fusion Method by Neural Network in Multi-Factor Authentication. In Proceedings of the Tenth ACM Conference on Data and Application Security and Privacy, Orleans, LA, USA, 16–18 March 2020. [Google Scholar] [CrossRef]
- Miyazawa, A.; Thao, T.P.; Yamaguchi, R.S. Multi-factor Behavioral Authentication Using Correlations Enhanced by Neural Network-based Score Fusion. In Proceedings of the 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2022; pp. 569–577. [Google Scholar] [CrossRef]
- Rocha, R.; Carneiro, D.; Costa, R.; Analide, C. Continuous Authentication in Mobile Devices Using Behavioral Biometrics. In Proceedings of the Ambient Intelligence—Software and Applications—10th International Symposium on Ambient Intelligence, Ávila, Spain, 26–28 June 2019; Novais, P., Lloret, J., Chamoso, P., Carneiro, D., Navarro, E., Omatu, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 1006, pp. 191–198. [Google Scholar] [CrossRef]
- Stragapede, G.; Vera-Rodriguez, R.; Tolosana, R.; Morales, A. BehavePassDB: Public Database for Mobile Behavioral Biometrics and Benchmark Evaluation. Pattern Recognit. 2023, 134, 109089. [Google Scholar] [CrossRef]
- Falkowski-Gilski, P.; Stefański, J. Quality Expectations of Mobile Subscribers. J. Telecommun. Inf. Technol. 2015, 1, 15–19. [Google Scholar]
- Chyzhevska, M.; Romanovska, N.; Ramskyi, A.; Venger, V.; Obushnyi, M. Behavioral Biometry as a Cyber Security Tool. In Proceedings of the Cybersecurity Providing in Information and Telecommunication Systems II, Kyiv, Ukrain, 26 October 2021; Volume 2, pp. 88–97. [Google Scholar]
- Falkowski-Gilski, P.; Stefański, J. Android OS: A Review. Tem J. 2015, 4, 116–120. [Google Scholar]
- Cenggoro, T.W.; Mahesworo, B.; Budiarto, A.; Baurley, J.; Suparyanto, T.; Pardamean, B. Features Importance in Classification Models for Colorectal Cancer Cases Phenotype in Indonesia. Procedia Comput. Sci. 2019, 157, 313–320. [Google Scholar] [CrossRef]
- Chen, C.; Shi, H.; Jiang, Z.; Salhi, A.; Chen, R.; Cui, X.; Yu, B. DNN-DTIs: Improved drug-target interactions prediction using XGBoost feature selection and deep neural network. Comput. Biol. Med. 2021, 136, 104676. [Google Scholar] [CrossRef]
- Muslim, M.A.; Dasril, Y. Company bankruptcy prediction framework based on the most influential features using XGBoost and stacking ensemble learning. Int. J. Electr. Comput. Eng. (IJECE) 2021, 11, 5549–5557. [Google Scholar] [CrossRef]
- Putatunda, S.; Rama, K. A Comparative Analysis of Hyperopt as Against Other Approaches for Hyper-Parameter Optimization of XGBoost. In Proceedings of the 2018 International Conference on Signal Processing and Machine Learning, Shanghai, China, 28–30 November 2018; pp. 6–10. [Google Scholar] [CrossRef]
- Ogunleye, A.A.; Wang, Q.-G. XGBoost Model for Chronic Kidney Disease Diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 2131–2140. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Nahid, A.-A.; Abbas, R. Effective Intrusion Detection System Using XGBoost. Information 2018, 9, 149. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Zou, Q.; Yan, J.; Dong, Y.; Li, B. Remote Sensing Monitoring of Winter Wheat Stripe Rust Based on mRMR-XGBoost Algorithm. Remote Sens. 2022, 14, 756. [Google Scholar] [CrossRef]
- Sanders, W.; Li, D.; Li, W.; Fang, Z.N. Data-Driven Flood Alert System (FAS) Using Extreme Gradient Boosting (XGBoost) to Forecast Flood Stages. Water 2022, 14, 747. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Fei, Y.; Liu, Y.; Shen, L.; Zhuang, Z.; Zhang, X. Research on the Prediction of Green Plum Acidity Based on Improved XGBoost. Sensors 2021, 21, 930. [Google Scholar] [CrossRef]
- Shahbazi, Z.; Byun, Y.-C. Knowledge Discovery on Cryptocurrency Exchange Rate Prediction Using Machine Learning Pipelines. Sensors 2022, 22, 1740. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, F.; Sun, Y.; Yin, Y. Improved XGBoost model based on genetic algorithm. Int. J. Comput. Appl. Technol. 2020, 62, 240. [Google Scholar] [CrossRef]
Hyperparameter | Value | Min | Max | Description |
---|---|---|---|---|
n_estimators | 220 | 1 | 350 | Number of weak classifiers (gradient-boosted trees) |
min_child_weight | 7 | 2 | 7 | Minimum sum of instance weight (hessian) needed in a child |
subsample | 0.658 | 0.1 | 0.99 | Subsample ratio of the training instance |
colsample_bytree | 0.791 | 0.5 | 1.0 | Subsample ratio of columns when constructing each tree |
reg_alpha | 0.415 | 0.0 | 2.0 | L1 regularization term on weights |
reg_lambda | 0.566 | 0.0 | 2.0 | L2 regularization term on weights |
Zeroed Feature | Sensitivity (True Positive Rate) | Specificity (True Negative Rate) | Objective Function | ROC-AUC |
---|---|---|---|---|
None (undamaged data) | 0.78 | 0.74 | 0.72 | 0.76 |
Accelerometer (x axis) | 0.71 | 0.65 | 0.56 | 0.68 |
Accelerometer (y axis) | 0.70 | 0.61 | 0.50 | 0.66 |
Accelerometer (z axis) | 0.80 | 0.43 | 0.38 | 0.61 |
Accelerometer (x, y, z axes) | 0.71 | 0.33 | 0.14 | 0.52 |
Gyroscope (x axis) | 0.77 | 0.61 | 0.58 | 0.69 |
Gyroscope (y axis) | 0.78 | 0.60 | 0.58 | 0.69 |
Gyroscope (z axis) | 0.77 | 0.68 | 0.63 | 0.72 |
Gyroscope (x, y, z axes) | 0.77 | 0.45 | 0.38 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybka, P.; Bąk, T.; Sobel, P.; Grzechca, D. Investigation of the Impact of Damaged Smartphone Sensors’ Readings on the Quality of Behavioral Biometric Models. Sensors 2022, 22, 9580. https://doi.org/10.3390/s22249580
Rybka P, Bąk T, Sobel P, Grzechca D. Investigation of the Impact of Damaged Smartphone Sensors’ Readings on the Quality of Behavioral Biometric Models. Sensors. 2022; 22(24):9580. https://doi.org/10.3390/s22249580
Chicago/Turabian StyleRybka, Paweł, Tomasz Bąk, Paweł Sobel, and Damian Grzechca. 2022. "Investigation of the Impact of Damaged Smartphone Sensors’ Readings on the Quality of Behavioral Biometric Models" Sensors 22, no. 24: 9580. https://doi.org/10.3390/s22249580
APA StyleRybka, P., Bąk, T., Sobel, P., & Grzechca, D. (2022). Investigation of the Impact of Damaged Smartphone Sensors’ Readings on the Quality of Behavioral Biometric Models. Sensors, 22(24), 9580. https://doi.org/10.3390/s22249580