Soil Moisture, Organic Carbon, and Nitrogen Content Prediction with Hyperspectral Data Using Regression Models
<p>Soil moisture vs. soil temperature graph.</p> "> Figure 2
<p>Box-plot of soil-moisture percentages, where the zero point of the box-plot represents the mean, the line intersecting the box shows the median value, and the lower and upper line of the whisker show the smallest and largest sample values.</p> "> Figure 3
<p>Box-plot of soil temperature interquartile range, mean, and skewness.</p> "> Figure 4
<p>Soil moisture reflectance curve of hyperspectral band ranging from 454 nm to 950 nm.</p> "> Figure 5
<p>Box-plot of soil organic carbon interquartile range, mean, skewness, and outliers.</p> "> Figure 6
<p>Box-plot of nitrogen content interquartile range, mean, skewness, and outliers.</p> "> Figure 7
<p>Absorbance of soil organic carbon in the hyperspectral band ranging from 400 nm to 2499.5 nm.</p> "> Figure 8
<p>Absorbance of soil nitrogen content in the hyperspectral band ranging from 400 nm to 2499.5 nm.</p> "> Figure 9
<p>Schematic diagram of regression framework of the proposed regression investigations using different machine learning methods.</p> "> Figure 10
<p>Schematic diagram of ten-fold cross validation.</p> "> Figure 11
<p>Box-plot of different ML approaches used to predict soil moisture, where black-diamond shows the outliers.</p> "> Figure 12
<p>Box-plot of different ML approaches for predicting soil carbon.</p> "> Figure 13
<p>Box-plot of different ML approaches for predicting nitrogen content.</p> ">
Abstract
:1. Introduction
- Effectively selecting the best HS band to ensure the good performance of ML regressors in predicting SM, SOC, and NC
- Evaluating the effect of soil temperature on SM prediction
- Use of PCA to improve model prediction accuracy
- To understand the combined effect of PCA and effective HS band features in predicting SM, SOC, and NC
- To propose a generalized approach that can predict soil content more accurately and efficiently
- Evaluating the accuracy of different ML models and comparing the results with the proposed method.
2. Dataset
2.1. Soil Moisture Data
2.1.1. Soil Moisture and Soil Temperature Data
2.1.2. Soil Moisture Hyperspectral Data
2.2. LUCAS Topsoil Data
3. Methodology
3.1. Data Prepossessing
3.1.1. Data Filtering and Mapping
3.1.2. Feature Scaling
3.1.3. Hyperspectral Band Selection
3.1.4. Data Dimension Reduction
3.2. Regression Model
3.3. Evaluation Parameter
4. Results of Model Evaluation and Validation
4.1. Soil Moisture Prediction
4.2. Soil Organic Carbon Prediction
4.3. Soil Nitrogen Content Prediction
5. Discussion
5.1. Soil Moisture Prediction
- The HS band can be used effectively to predict SM with good prediction accuracy; when AHSB is considered, the SVR algorithm performs best ( = 95.43%, = 0.49, = 0.80).
- Although soil temperature shows good correlation with soil moisture, the average prediction in terms of performance is not further improved, being reduced from 85.47% to 81.89% when considering the soil temperature effect with AHSB.
- Effective band selection has a noticeable impact on SM prediction. Very similar results are recorded after eliminating a good portion of HS data, and the average prediction results improve from 85.47% to 85.61%;
- PCA has a significant impact on SM prediction. The best prediction accuracy is noted for the GB regressor ( = 95.98%, = 0.46, = 0.76) when PCA is performed on AHSB.
- In terms of average response, considering all ML models, PCA analysis on influential bands provides the best SM estimation accuracy in terms of (91.62%).
5.2. Soil Organic Carbon Prediction
- The RF model provides the best prediction accuracy in terms of (83.93%) when AHSB is considered. However, the MAE and RMSE are 35.13 and 62.46, respectively, showing unpredictable accuracy due to a higher error rate.
- With the Lasso algorithm used to perform band selection, the prediction accuracy is improved; SVR sees the best prediction accuracy ( = 90.52%, = 26.00, and = 48.36).
- When PCA is performed on AHSB, the prediction accuracy is improved in terms of . However, the MAE and RMSE is not much improved.
- Finally, when PCA is applied on SB the best prediction accuracy is noted for the ANN algorithm, with = 89.27%; MAE and RMSE are 28.19 and 48.53, respectively;
- The SOC prediction accuracy in terms of is satisfactory, as it defines the normalized difference between actual and predicted data.
- However, the error rate of and is high, as the variation of the soil sample is high. As and indicate the absolute difference between the original value and predicted value, it seems not to work any better; however, there is good correlation.
5.3. Soil Nitrogen Content Prediction
- Soil NC can be predicted with reasonable accuracy from HS data. When AHSB range is considered, SOM provides the best prediction accuracy ( = 74.71%, = 1.87, = 3.01);
- The prediction accuracy for all of the ML regressors is further improved when effective band selection via the Lasso algorithm is considered; the average prediction accuracy improves from 70.56% to 73.37% in terms of value.
- PCA analysis plays a vital role in further improving prediction accuracy, with the average prediction accuracy increasing to 73.31% when PCA is applied on AHSB.
- The best result is obtained when PCA is performed on effective SB for the KNN regressor, with 77.80% prediction accuracy. From the value of the average result (75.69%), it can be observed that PCA on SB is the most important feature for predicting NC from HS data.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chari, M.M.; Hamandawana, H.; Zhou, L. Integrating Remotely Sensed Soil Moisture in Assessing the Effects of Climate Change on Food Production: A Review of Applications in Crop Production in Africa. In Handbook of Climate Change Across the Food Supply Chain; Springer: Berlin/Heidelberg, Germany, 2022; pp. 213–228. [Google Scholar]
- Yadav, A.N.; Singh, J.; Singh, C.; Yadav, N. Current Trends in Microbial Biotechnology for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Foyer, C.H.; Lam, H.M.; Nguyen, H.T.; Siddique, K.H.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 16112. [Google Scholar] [CrossRef] [PubMed]
- Iizumi, T.; Sakuma, H.; Yokozawa, M.; Luo, J.J.; Challinor, A.J.; Brown, M.E.; Sakurai, G.; Yamagata, T. Prediction of seasonal climate-induced variations in global food production. Nat. Clim. Chang. 2013, 3, 904–908. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration; Springer Nature: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Humphrey, V.; Berg, A.; Ciais, P.; Gentine, P.; Jung, M.; Reichstein, M.; Seneviratne, S.I.; Frankenberg, C. Soil moisture—Atmosphere feedback dominates land carbon uptake variability. Nature 2021, 592, 65–69. [Google Scholar] [CrossRef]
- Liu, L.; Gudmundsson, L.; Hauser, M.; Qin, D.; Li, S.; Seneviratne, S.I. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 2020, 11, 4892. [Google Scholar] [CrossRef]
- Mahmood, F.; Khan, I.; Ashraf, U.; Shahzad, T.; Hussain, S.; Shahid, M.; Abid, M.; Ullah, S. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutr. 2017, 17, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Zainul, A.; Koyro, H.W.; Huchzermeyer, B.; Gul, B.; Khan, M.A. Impact of a biochar or a compost-biochar mixture on water relation, nutrient uptake and photosynthesis of Phragmites karka. Pedosphere 2017, 160, 1–22. [Google Scholar]
- Cleverly, J.; Eamus, D.; Coupe, N.R.; Chen, C.; Maes, W.; Li, L.; Faux, R.; Santini, N.S.; Rumman, R.; Yu, Q.; et al. Soil moisture controls on phenology and productivity in a semi-arid critical zone. Sci. Total Environ. 2016, 568, 1227–1237. [Google Scholar] [CrossRef]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; MustafaBhabhan, G.; HussainTalpur, K.; Bhutto, T.A.; Wahocho, S.A.; Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Badía, D.; López-García, S.; Martí, C.; Ortíz-Perpiñá, O.; Girona-García, A.; Casanova-Gascón, J. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Sci. Total Environ. 2017, 601, 1119–1128. [Google Scholar] [CrossRef]
- Xu, S.; Liu, Y.; Wang, X.; Zhang, G. Scale effect on spatial patterns of ecosystem services and associations among them in semi-arid area: A case study in Ningxia Hui Autonomous Region, China. Sci. Total Environ. 2017, 598, 297–306. [Google Scholar] [CrossRef]
- Xue, J.; Guan, H.; Huo, Z.; Wang, F.; Huang, G.; Boll, J. Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater. Agric. Water Manag. 2017, 194, 78–89. [Google Scholar] [CrossRef]
- Mayer, M.; Prescott, C.E.; Abaker, W.E.; Augusto, L.; Cécillon, L.; Ferreira, G.W.; James, J.; Jandl, R.; Katzensteiner, K.; Laclau, J.P.; et al. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 2020, 466, 118127. [Google Scholar] [CrossRef]
- Jain, A.K.; Meiyappan, P.; Song, Y.; House, J.I. CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data. Glob. Chang. Biol. 2013, 19, 2893–2906. [Google Scholar] [CrossRef]
- Kumar, S.V.; Dirmeyer, P.A.; Peters-Lidard, C.D.; Bindlish, R.; Bolten, J. Information theoretic evaluation of satellite soil moisture retrievals. Remote Sens. Environ. 2018, 204, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Visconti, F.; Jiménez, M.G.; de Paz, J.M. How do the chemical characteristics of organic matter explain differences among its determinations in calcareous soils? Geoderma 2022, 406, 115454. [Google Scholar] [CrossRef]
- McGill, W.; Figueiredo, C. Total nitrogen. In Soil Sampling and Methods of Analysis; Wiley Online Library; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 201–211. [Google Scholar]
- Zhang, Y.; Migliavacca, M.; Penuelas, J.; Ju, W. Advances in hyperspectral remote sensing of vegetation traits and functions. Remote Sens. Environ. 2021, 252, 112121. [Google Scholar] [CrossRef]
- Krishna, G.; Sahoo, R.N.; Singh, P.; Bajpai, V.; Patra, H.; Kumar, S.; Dandapani, R.; Gupta, V.K.; Viswanathan, C.; Ahmad, T.; et al. Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agric. Water Manag. 2019, 213, 231–244. [Google Scholar] [CrossRef]
- Suzuki, S.; Matsui, T. Remote sensing for medical and health care applications. In Remote Sensing-Applications; Boris, E., Ed.; BoD–Books on Demand: Norderstedt, Deutschland, 2012; pp. 479–492. [Google Scholar]
- Fei, B. Hyperspectral imaging in medical applications. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 32, pp. 523–565. [Google Scholar]
- Edelman, G.J.; Gaston, E.; Van Leeuwen, T.G.; Cullen, P.; Aalders, M.C. Hyperspectral imaging for non-contact analysis of forensic traces. Forensic Sci. Int. 2012, 223, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Shimoni, M.; Haelterman, R.; Perneel, C. Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. [Google Scholar] [CrossRef]
- Majda, A.; Wietecha-Posłuszny, R.; Mendys, A.; Wójtowicz, A.; Łydżba-Kopczyńska, B. Hyperspectral imaging and multivariate analysis in the dried blood spots investigations. Appl. Phys. A 2018, 124, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, R.; Uzair, M.; Khurshid, K.; Yan, H. Hyperspectral document image processing: Applications, challenges and future prospects. Pattern Recognit. 2019, 90, 12–22. [Google Scholar] [CrossRef]
- Boubanga-Tombet, S.; Huot, A.; Vitins, I.; Heuberger, S.; Veuve, C.; Eisele, A.; Hewson, R.; Guyot, E.; Marcotte, F.; Chamberland, M. Thermal infrared hyperspectral imaging for mineralogy mapping of a mine face. Remote Sens. 2018, 10, 1518. [Google Scholar] [CrossRef]
- Liu, Y.; Pu, H.; Sun, D.W. Hyperspectral imaging technique for evaluating food quality and safety during various processes: A review of recent applications. Trends Food Sci. Technol. 2017, 69, 25–35. [Google Scholar] [CrossRef]
- Riese, F.M.; Keller, S. Introducing a framework of self-organizing maps for regression of soil moisture with hyperspectral data. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, IEEE Xplore, Valencia, Spain, 22–27 July 2018; pp. 6151–6154. [Google Scholar]
- Mohite, J.; Sawant, S.; Pandit, A.; Pappula, S. Simulation of Sentinel-2 data using Hyperspectral Data for Bare Surface Soil Moisture Estimation. In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shenzhen, China, 26–29 July 2021; pp. 1–5. [Google Scholar]
- Ge, X.; Wang, J.; Ding, J.; Cao, X.; Zhang, Z.; Liu, J.; Li, X. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. PeerJ 2019, 7, e6926. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating agricultural soil moisture content through UAV-based hyperspectral images in the arid region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Toth, G.; Panagos, P.; van Wesemael, B.; Montanarella, L. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biol. Biochem. 2014, 68, 337–347. [Google Scholar] [CrossRef]
- Steinberg, A.; Chabrillat, S.; Stevens, A.; Segl, K.; Foerster, S. Prediction of common surface soil properties based on Vis-NIR airborne and simulated EnMAP imaging spectroscopy data: Prediction accuracy and influence of spatial resolution. Remote Sens. 2016, 8, 613. [Google Scholar] [CrossRef] [Green Version]
- Stevens, A.; Nocita, M.; Tóth, G.; Montanarella, L.; van Wesemael, B. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoS ONE 2013, 8, e66409. [Google Scholar] [CrossRef]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van Wesemael, B. Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282. [Google Scholar] [CrossRef]
- Van Wesemael, B.; Paustian, K.; Meersmans, J.; Goidts, E.; Barancikova, G.; Easter, M. Agricultural management explains historic changes in regional soil carbon stocks. Proc. Natl. Acad. Sci. USA 2010, 107, 14926–14930. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhuang, Q.; Jin, X.; Yang, Z.; Liu, H. Predicting soil organic carbon and soil nitrogen stocks in topsoil of forest ecosystems in northeastern china using remote sensing data. Remote Sens. 2020, 12, 1115. [Google Scholar] [CrossRef] [Green Version]
- Castaldi, F.; Chabrillat, S.; Jones, A.; Vreys, K.; Bomans, B.; Van Wesemael, B. Soil organic carbon estimation in croplands by hyperspectral remote APEX data using the LUCAS topsoil database. Remote Sens. 2018, 10, 153. [Google Scholar] [CrossRef]
- Bhunia, G.S.; Kumar Shit, P.; Pourghasemi, H.R. Soil organic carbon mapping using remote sensing techniques and multivariate regression model. Geocarto Int. 2019, 34, 215–226. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Dalal, R.; Henry, R. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry. Soil Sci. Soc. Am. J. 1986, 50, 120–123. [Google Scholar] [CrossRef]
- Morra, M.; Hall, M.; Freeborn, L. Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy. Soil Sci. Soc. Am. J. 1991, 55, 288–291. [Google Scholar] [CrossRef]
- Yu, H.; Kong, B.; Wang, G.; Du, R.; Qie, G. Prediction of soil properties using a hyperspectral remote sensing method. Arch. Agron. Soil Sci. 2018, 64, 546–559. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Y.; Li, J.; Zhou, W. Spectroscopic determination of soil organic carbon and total nitrogen content in pasture soils. Commun. Soil Sci. Plant Anal. 2014, 45, 1037–1048. [Google Scholar] [CrossRef]
- Zheng, L.H.; Li, M.Z.; Pan, L.; Sun, J.Y.; Tang, N. Estimation of soil organic matter and soil total nitrogen based on NIR spectroscopy and BP neural network. Guang Pu Xue Yu Guang Pu Fen Xi Guang Pu 2008, 28, 1160–1164. [Google Scholar]
- Lin, L.; Wang, Y.; Teng, J.; Xi, X. Hyperspectral analysis of soil total nitrogen in subsided land using the local correlation maximization-complementary superiority (LCMCS) method. Sensors 2015, 15, 17990–18011. [Google Scholar] [CrossRef] [Green Version]
- Tao, P.; Zhen-Tao, W.; Hua-Zhou, C. Waveband optimization for near-infrared spectroscopic analysis of total nitrogen in soil. Chin. J. Anal. Chem. 2012, 40, 920–924. [Google Scholar]
- Kuang, B.; Mouazen, A.M. Non-biased prediction of soil organic carbon and total nitrogen with vis–NIR spectroscopy, as affected by soil moisture content and texture. Biosyst. Eng. 2013, 114, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Cui, L.; Wang, J.; Fei, T.; Chen, Y.; Wu, G. Comparison of multivariate methods for estimating soil total nitrogen with visible/near-infrared spectroscopy. Plant Soil 2013, 366, 363–375. [Google Scholar] [CrossRef]
- Chang, C.W.; Laird, D.A.; Hurburgh, C.R., Jr. Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties. Soil Sci. 2005, 170, 244–255. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, W.; Huang, J.; Wu, J.; Van Leeuwen, W.J. Prediction of soil moisture content and soil salt concentration from hyperspectral laboratory and field data. Remote Sens. 2016, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Haijun, Q.; Xiu, J.; Liu, Z.; Maxime, D.I.; Shaowen, L. Predicting sandy soil moisture content with hyperspectral imaging. Int. J. Agric. Biol. Eng. 2017, 10, 175–183. [Google Scholar] [CrossRef]
- Li, Z.; Deng, C.; Zhao, B.; Tian, Y.; Huang, Y. Hyperspectral inversion for soil moisture and temperature based on Gaussian process regression. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019; pp. 1–4. [Google Scholar]
- Meng, X.; Bao, Y.; Liu, J.; Liu, H.; Zhang, X.; Zhang, Y.; Wang, P.; Tang, H.; Kong, F. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102111. [Google Scholar] [CrossRef]
- Reis, A.S.; Rodrigues, M.; dos Santos, G.L.A.A.; de Oliveira, K.M.; Furlanetto, R.H.; Crusiol, L.G.T.; Cezar, E.; Nanni, M.R. Detection of soil organic matter using hyperspectral imaging sensor combined with multivariate regression modeling procedures. Remote Sens. Appl. Soc. Environ. 2021, 22, 100492. [Google Scholar] [CrossRef]
- Hobley, E.; Steffens, M.; Bauke, S.L.; Kögel-Knabner, I. Hotspots of soil organic carbon storage revealed by laboratory hyperspectral imaging. Sci. Rep. 2018, 8, 13900. [Google Scholar] [CrossRef] [Green Version]
- Pudełko, A.; Chodak, M.; Roemer, J.; Uhl, T. Application of FT-NIR spectroscopy and NIR hyperspectral imaging to predict nitrogen and organic carbon contents in mine soils. Measurement 2020, 164, 108117. [Google Scholar] [CrossRef]
- Xu, S.; Wang, M.; Shi, X.; Yu, Q.; Zhang, Z. Integrating hyperspectral imaging with machine learning techniques for the high-resolution mapping of soil nitrogen fractions in soil profiles. Sci. Total Environ. 2021, 754, 142135. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Li, H.; Wang, Y.; Tong, R.; Li, Q. Hyperspectral imaging analysis for the classification of soil types and the determination of soil total nitrogen. Sensors 2017, 17, 2252. [Google Scholar] [CrossRef] [PubMed]
- Riese, F.M.; Keller, S. Hyperspectral benchmark dataset on soil moisture. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Valencia, Spain, 22–27 July 2018; p. 1227837. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Li, X. A fast neighborhood grouping method for hyperspectral band selection. IEEE Trans. Geosci. Remote Sens. 2020, 59, 5028–5039. [Google Scholar] [CrossRef]
- Jin, M.S.; Mullens, T. A study of the relations between soil moisture, soil temperatures and surface temperatures using ARM observations and offline CLM4 simulations. Climate 2014, 2, 279–295. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Xiang, X.; Li, S.; Benediktsson, J.A. PCA-based edge-preserving features for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7140–7151. [Google Scholar] [CrossRef]
- Kherif, F.; Latypova, A. Principal component analysis. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 209–225. [Google Scholar]
- Tóth, G.; Jones, A.; Montanarella, L. The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union. Environ. Monit. Assess. 2013, 185, 7409–7425. [Google Scholar] [CrossRef] [PubMed]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Ward, K.J.; Chabrillat, S.; Neumann, C.; Foerster, S. A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database. Geoderma 2019, 353, 297–307. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, J.; Song, X.; Qin, Z.; Wu, L.; Wang, H.; Tang, J. Hyperspectral band selection and modeling of soil organic matter content in a forest using the Ranger algorithm. PLoS ONE 2021, 16, e0253385. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Liu, Y.; Wang, Y.; Zhang, J. New machine learning algorithm: Random forest. In Proceedings of the International Conference on Information Computing and Applications, Chengde, China, 14–16 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 246–252. [Google Scholar]
- Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An introduction to decision tree modeling. J. Chemom. A J. Chemom. Soc. 2004, 18, 275–285. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgo, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines; Springer: Berlin/Heidelberg, Germany, 2015; pp. 67–80. [Google Scholar]
- Zhang, Z. Introduction to machine learning: K-nearest neighbors. Ann. Transl. Med. 2016, 4, 218. [Google Scholar] [CrossRef] [Green Version]
- Kukreja, H.; Bharath, N.; Siddesh, C.; Kuldeep, S. An introduction to artificial neural network. Int. J. Adv. Res. Innov. Ideas. Educ. 2016, 1, 27–30. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Alexander, D.L.; Tropsha, A.; Winkler, D.A. Beware of R 2: Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models. J. Chem. Inf. Model. 2015, 55, 1316–1322. [Google Scholar] [CrossRef]
Model | Library Package | Hyper-Parameter |
---|---|---|
LR | scikit-learn | – |
RF | scikit-learn | bootstrap = True, criterion = squared_error, max_feature = auto, min_samples_leaf = 1, min_samples_split = 2, n_estimators = 100, n_jobs = −1 |
DT | scikit-learn | – |
GB | scikit-learn | – |
SVR | scikit-learn | C = np.logspace(−8, 8, 17), = np.logspace(−8, 8, 17), estimator = SVR(), n_iter = 30, cv = 5, n_jobs = −1, param_distributions = params, kernel = rbf, max_iter = −1, shrinking = True, tol = 0.001 |
SOM | susi | n_rows = 35, n_columns = 35, n_iter_unsupervised = 10,000, n_iter_supervised = 10,000, n_jobs = −1 |
KNN | scikit-learn | n_neighbors = 5, algorithm = auto, leaf_size = 30, metric = minkowski, weights = uniform, n_jobs = None |
ANN | scikit-learn | hidden_layer_sizes = (20, 20, 20), batch_size = 10, max_iter = 500, algorithm = auto, metric = minkowski, metric_params = None, n_jobs = None, n_neighbors = 5, p = 2, weights = uniform |
Model | AHSB 1 | AHSB + T 2 | SB 3 | SB + T | PCA (AHSB) | PCA (SB) | PCA (AHSB + T) | PCA (SB + T) |
---|---|---|---|---|---|---|---|---|
LR | * 69.52%, 1.73, 2.25 | 69.57%, 1.72, 2.25 | 78.83%, 1.28, 1.68 | 79.18%, 1.27, 1.67 | 79.90%, 1.17, 1.51 | 81.03%, 1.16, 1.47 | 80.74%, 1.15, 1.49 | 82.19%, 1.13, 1.41 |
RF | 92.35%, 0.61, 1.02 | 92.85%, 0.59, 1.00 | 92.02%, 0.61, 1.01 | 92.54%, 0.57, 0.99 | 94.73%, 0.49, 0.84 | 94.99%, 0.53, 0.89 | 93.71%, 0.52, 0.92 | 93.11%, 0.57, 0.98 |
DT | 88.48%, 0.66, 1.34 | 86.15%, 0.66, 1.32 | 90.93%, 0.61, 1.22 | 84.68%, 0.76, 1.50 | 86.95%, 0.63, 1.44 | 90.69%, 0.54, 1.08 | 85.67%, 0.55, 1.24 | 85.47%, 0.60, 1.19 |
GB | 92.27%, 0.64, 1.09 | 92.69%, 0.59, 1.08 | 91.85%, 0.60, 1.01 | 92.91%, 0.56, 0.99 | 95.98%, 0.46, 0.76 | 95.30%, 0.49, 0.80 | 95.74%, 0.51, 0.85 | 94.08%, 0.56, 0.90 |
SVR | 95.43%, 0.49, 0.80 | 85.78%, 0.84, 1.31 | 94.31%, 0.56, 0.88 | 87.95%, 0.78, 1.22 | 91.29%, 0.62, 1.01 | 92.91%, 0.63, 1.12 | 87.79%, 0.82, 1.23 | 93.34%, 0.56, 0.90 |
SOM | 89.81%, 0.72, 1.10 | 82.90%, 0.95, 1.43 | 91.20%, 0.64, 0.99 | 83.39%, 0.94, 1.42 | 92.72%, 0.63, 0.98 | 93.44%, 0.61, 0.94 | 93.41%, 0.55, 0.89 | 91.87%, 0.64, 1.01 |
KNN | 90.95%, 0.68, 1.08 | 73.33%, 1.25, 1.77 | 88.92%, 0.76, 1.16 | 71.41%, 1.33, 1.84 | 90.39%, 0.65, 1.05 | 91.51%, 0.65, 1.08 | 93.69%, 0.52, 0.95 | 93.56%, 0.49, 0.90 |
ANN | 64.93%, 1.42, 2.07 | 71.87%, 1.45, 1.90 | 56.85%, 1.69, 2.34 | 72.75%, 1.46, 2.00 | 90.45%, 0.61, 0.93 | 93.11%, 0.73, 1.00 | 90.34%, 0.95, 1.39 | 90.99%, 0.73, 1.02 |
Average Result () | 85.47% | 81.89% | 85.61% | 83.10% | 90.66% | 91.62% | 90.14% | 90.58% |
Model | AHSB 1 | SB 2 (Lasso) | PCA (AHSB) | PCA (SB-Lasso) |
---|---|---|---|---|
LR | 71.94%, 55.68, 75.62 | 77.00%, 52.40, 77.00 | 81.25%, 46.03, 63.30 | 88.38%, 35.10, 50.24 |
RF | 83.93%, 35.13, 62.46 | 82.60%, 35.91, 64.63 | 83.37%, 36.60, 62.33 | 83.51%, 35.04, 60.07 |
DT | 67.43%, 42.94, 77.95 | 64.12%, 47.02, 85.58 | 70.74%, 46.53, 83.43 | 68.62%, 49.03, 85.52 |
GB | 81.56%, 36.08, 64.15 | 82.00%, 37.24, 64.95 | 84.20%, 35.34, 59.43 | 85.57%, 32.62, 55.37 |
SVR | 78.94%, 48.06, 67.39 | 90.52%, 26.00, 48.36 | 85.11%, 33.60, 56.98 | 89.72%, 27.60, 47.87 |
SOM | 78.97%, 41.02, 67.07 | 79.36%, 41.27, 70.23 | 78.85%, 40.60, 66.73 | 76.56%, 42.89, 72.32 |
KNN | 83.08%, 35.92, 60.92 | 84.25%, 35.52, 60.41 | 83.31%, 37.11, 62.74 | 83.56%, 35.76, 61.50 |
ANN | 80.33%, 38.58, 62.58 | 77.80%, 40.77, 64.60 | 84.81%, 35.59, 60.14 | 89.27%, 28.19, 48.53 |
Average Result (in terms of ) | 78.27% | 79.70% | 81.45% | 83.14% |
Model | AHSB 1 | SB 2 (Lasso) | PCA (AHSB) | PCA (SB-Lasso) |
---|---|---|---|---|
LR | 67.40%, 2.38, 3.22 | 73.09%, 2.50, 3.20 | 79.31%, 1.85, 2.65 | 79.23%, 1.83, 2.63 |
RF | 73.98%, 1.80, 3.03 | 74.57%, 1.76, 2.89 | 76.25%, 1.78, 2.85 | 77.91%, 1.61, 2.68 |
DT | 56.60%, 2.29, 3.89 | 57.51%, 2.32, 3.97 | 51.77%, 2.40, 4.11 | 58.87%, 2.19, 3.75 |
GB | 71.91%, 1.80, 3.01 | 74.31%, 1.79, 2.96 | 75.07%, 1.77, 2.84 | 77.60%, 1.63, 2.71 |
SVR | 71.64%, 2.09, 2.99 | 75.63%, 1.91, 3.00 | 80.57%, 1.55, 2.66 | 78.97%, 1.77, 2.67 |
SOM | 74.71%, 1.87, 3.01 | 76.05%, 1.79, 2.88 | 73.93%, 1.86, 2.99 | 77.49%, 1.78, 2.81 |
KNN | 73.96%, 1.83, 2.95 | 76.79%, 1.76, 2.84 | 74.81%, 1.84, 2.95 | 77.80%, 1.74, 2.77 |
ANN | 74.30%, 1.80, 2.80 | 79.05%, 1.73, 2.74 | 74.82%, 1.68, 2.68 | 77.68%, 1.66, 2.68 |
Average Result (in terms of ) | 70.56% | 73.37% | 73.31% | 75.69% |
Soil Property | Model | Feature Combination | Best Result () |
---|---|---|---|
Soil Moisture | GB | PCA (AHSB) | 95.98% |
Organic Carbon | SVR | SB | 90.52% |
Nitrogen Content | LR | PCA (SB) | 79.23% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Datta, D.; Paul, M.; Murshed, M.; Teng, S.W.; Schmidtke, L. Soil Moisture, Organic Carbon, and Nitrogen Content Prediction with Hyperspectral Data Using Regression Models. Sensors 2022, 22, 7998. https://doi.org/10.3390/s22207998
Datta D, Paul M, Murshed M, Teng SW, Schmidtke L. Soil Moisture, Organic Carbon, and Nitrogen Content Prediction with Hyperspectral Data Using Regression Models. Sensors. 2022; 22(20):7998. https://doi.org/10.3390/s22207998
Chicago/Turabian StyleDatta, Dristi, Manoranjan Paul, Manzur Murshed, Shyh Wei Teng, and Leigh Schmidtke. 2022. "Soil Moisture, Organic Carbon, and Nitrogen Content Prediction with Hyperspectral Data Using Regression Models" Sensors 22, no. 20: 7998. https://doi.org/10.3390/s22207998
APA StyleDatta, D., Paul, M., Murshed, M., Teng, S. W., & Schmidtke, L. (2022). Soil Moisture, Organic Carbon, and Nitrogen Content Prediction with Hyperspectral Data Using Regression Models. Sensors, 22(20), 7998. https://doi.org/10.3390/s22207998