Modulation Recognition of Communication Signals Based on Multimodal Feature Fusion
<p>Principle framework of the proposed scheme.</p> "> Figure 2
<p>Deep residual shrinkage network model. (<b>a</b>) RSBU-CW Block; (<b>b</b>) RSBU-CW12.</p> "> Figure 3
<p>Time-frequency domain feature inputs. (<b>a</b>) I/Q waveform; (<b>b</b>) modulus and phase; (<b>c</b>) welch spectrum; (<b>d</b>) square spectrum; (<b>e</b>) fourth power spectrum.</p> "> Figure 3 Cont.
<p>Time-frequency domain feature inputs. (<b>a</b>) I/Q waveform; (<b>b</b>) modulus and phase; (<b>c</b>) welch spectrum; (<b>d</b>) square spectrum; (<b>e</b>) fourth power spectrum.</p> "> Figure 4
<p>PNN model.</p> "> Figure 5
<p>Different feature inputs (QPSK as example). (<b>a</b>) I/Q waveform; (<b>b</b>) vector diagram; (<b>c</b>) time-frequency diagram; (<b>d</b>) eye diagram.</p> "> Figure 5 Cont.
<p>Different feature inputs (QPSK as example). (<b>a</b>) I/Q waveform; (<b>b</b>) vector diagram; (<b>c</b>) time-frequency diagram; (<b>d</b>) eye diagram.</p> "> Figure 6
<p>Residual network model. (<b>a</b>) RBU; (<b>b</b>) RBU1; (<b>c</b>) RBU12; and (<b>d</b>) RBU24.</p> "> Figure 7
<p>Recognition accuracy curve of different network models with change of SNR.</p> "> Figure 8
<p>Recognition accuracy curve of different schemes with change of SNR.</p> "> Figure 9
<p>Recognition performance of the proposed scheme. (<b>a</b>) Recognition accuracy curve of each modulation type; (<b>b</b>) overall confusion matrix. The darker the color, the higher the value.</p> "> Figure 10
<p>Multipath fading channel. (<b>a</b>) Rayleigh fading channel; (<b>b</b>) Rician fading channel.</p> "> Figure 11
<p>Comparison of different channel recognition performance.</p> "> Figure 12
<p>Recognition performance curve of public dataset, RadioML2018.01A. (<b>a</b>) ASK+QAM; (<b>b</b>) PSK+APSK; (<b>c</b>) low Order+Analog; (<b>d</b>) comparison of different schemes recognition performance.</p> ">
Abstract
:1. Introduction
- (i)
- From the perspective of the time-frequency domain, I/Q waveform, modulus and phase, as well as the welch spectrum, square spectrum, and fourth power spectrum are extracted as network input.
- (ii)
- RSBU-CW12 is designed to extract high-dimensional features in space, LSTM is used to extract temporal features, and outer product operation is utilized to conduct pairwise interaction between the above-extracted spatial and temporal features.
- (iii)
- Product-based neural networks (PNN) are adopted to enhance the ability to learn cross-features.
2. Signal Model
3. The Proposed Scheme
3.1. Network Model Structure
3.2. Multimodal Feature Fusion
3.2.1. Multimodal Feature Input in the Time-Frequency Domain
3.2.2. Temporal and Spatial Feature-Fusion
3.2.3. PNN Feature Cross Fusion
- (1)
- Features Input
- (2)
- Product Layer
- (3)
- L1 Hidden Layer
- (4)
- L2 Hidden Layer
4. Experimental Results Analysis
4.1. Simulation Results Analysis
4.2. Public Dataset Validation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, R.; Liu, F.; Gravelle, C.W. Deep learning for modulation recognition: A survey with a demonstration. IEEE Access 2020, 8, 67366–67376. [Google Scholar] [CrossRef]
- Weaver, C.; Cole, C.; Krumland, R. The Automatic Classification of Modulation Types by Pattern Recognition; Stanford University Technical Report; Defense Technical Information Center: Ft. Belvoir, VA, USA, 1969; pp. 1–31. [Google Scholar]
- Abdel-Moneim, M.A.; El-Shafai, W.; Abdel-Salam, N.; El-Rabaie, E.S.M.; Abd El-Samie, F.E. A survey of traditional and advanced automatic modulation classification techniques, challenges, and some novel trends. Int. J. Commun. Syst. 2021, 34, e4762. [Google Scholar] [CrossRef]
- Chen, W.; Xie, Z.; Ma, L.; Liu, J.; Liang, X. A faster maximum-likelihood modulation classification in flat fading non-gaussian channels. IEEE Commun. Lett. 2019, 23, 454–457. [Google Scholar] [CrossRef]
- Wang, Z.; Zhai, L.; Fu, J. Modulation type recognition algorithm based on modulation instantaneous structure difference and deep learning. IOP Conf. Ser. Earth Environ. Sci. 2021, 692, 042073. [Google Scholar] [CrossRef]
- Pajic, M.S.; Veinovic, M.; Peric, M.; Orlic, V.D. Modulation order reduction method for improving the performance of amc algorithm based on sixth-order cumulants. IEEE Access 2020, 8, 106386–106394. [Google Scholar] [CrossRef]
- Li, W.; Dou, Z.; Qi, L.; Shi, C. Wavelet transform based modulation classification for 5 g and uav communication in multipath fading channel. Phys. Commun. 2019, 34, 272–282. [Google Scholar] [CrossRef]
- Câmara, T.V.R.O.; Lima, A.D.L.; Lima, B.M.M.; Fontes, A.I.R.; Martins, A.D.M.; Silveira, L.F.Q. Automatic modulation classification architectures based on cyclostationary features in impulsive environments. IEEE Access 2019, 7, 138512–138527. [Google Scholar] [CrossRef]
- O’Shea, T.J.; Corgan, J.; Clancy, T.C. Convolutional radio modulation recognition networks. Commun. Comput. Inf. Sci. 2016, 629, 213–226. [Google Scholar]
- O’Shea, T.J.; Roy, T.; Clancy, T.C. Over-the-air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process. 2018, 12, 168–179. [Google Scholar] [CrossRef]
- Zha, X.; Peng, H.; Qin, X.; Li, G.; Yang, S. A deep learning framework for signal detection and modulation classification. Sensors 2019, 19, 4042. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Su, S.; Zuo, Z.; Guo, X.; Tan, X. Modulation classification using compressed sensing and decision tree–support vector machine in cognitive radio system. Sensors 2020, 20, 1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Gao, W.; Huang, Q. Automatic modulation recognition based on a Dcn-Bilstm network. Sensors 2021, 21, 1577. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Guo, L.; Dong, C.; Cong, F.; Mu, X. Automatic modulation classification using multi-scale convolutional neural network. In Proceedings of the 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 31 August 2020–3 September 2020. [Google Scholar]
- Qi, P.; Zhou, X.; Zheng, S.; Li, Z. Automatic Modulation classification based on deep residual networks with multimodal information. IEEE Trans. Cogn. Commun. Netw. 2021, 7, 21–33. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, H.; Wang, C.; Gan, C.; Xiang, Y.; Member, S. Automatic modulation classification using cnn-lstm based dual-stream structure. IEEE Trans. Veh. Technol. 2020, 69, 13521–13531. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Tian, X. Spectrum sensing based on signal envelope of rayleigh multi-path fading channels. Dianzi Yu Xinxi Xuebao/J. Electron. Inf. Technol. 2020, 42, 1231–1236. [Google Scholar]
- Wang, X.; Yu, Z.; Zhu, M.; Bai, B.; Liu, W.; Rong, Q. Optimization design of generalized psam format over rician channel. Syst. Eng. Electron. 2021, 43, 1679–1685. [Google Scholar]
- Tse, D.; Viswanath, P. The wireless channel. In Fundamentals of Wireless Communication, 1st ed.; Cambridge University Press: New York, NY, USA, 2005; Volume 2, pp. 31–33. [Google Scholar]
- Guanye, C. Deep learning modulation recognition based on instantaneous amplitude and phase. Comput. Appl. Softw. 2021, 38, 197–204. [Google Scholar]
- Zamrodah, Y. Convolutional, long short-term memory, fully connected deep neural networks. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 19–24 April 2015; Volume 15, pp. 1–23. [Google Scholar]
I/Q Waveform | Vector Diagram | Time-Frequency Diagram | Eye Diagram | |
---|---|---|---|---|
RBU1 | 0.6526 | 0.6491 | 0.5625 | 0.3333 |
RBU12 | 0.7738 | 0.6781 | 0.7248 | 0.3488 |
RBU24 | 0.7836 | 0.6950 | 0.7426 | 0.3505 |
RBU1 | RBU12 | RBU24 | |
---|---|---|---|
Parameters(M) | 4.3652 | 2.3646 | 2.8997 |
FLOPs(M) | 4.4943 | 9.6636 | 16.7901 |
Overall Recognition Accuracy | |
---|---|
LSTM (two-layer) | 0.7303 |
Bi-LSTM | 0.7357 |
RSBU12 | 0.7738 |
CLDNN(LSTM) | 0.7931 |
CLDNN(Bi-LSTM) | 0.7945 |
RSBU-CW12 | 0.8307 |
Feature Input | Network | Feature Fusion Method | |
---|---|---|---|
MSN [14] | I/Q waveform | MPN | Multi-scale feature maps merging |
WSMF [15] | I/Q waveform, modulus and phase, welch spectrum, square spectrum and fourth power spectrum | Resnet | Multimodal information from multiple transformation domain concatenation |
CNN-LSTM [16] | I/Q waveform, modulus and phase | CNN-LSTM based dual-stream structure | The spatial-temporal feature interaction |
ours | I/Q waveform, modulus and phase, welch spectrum, square spectrum and fourth power spectrum | RSBU-CW12, LSTM, PNN | Multimodal information from multiple transformation domain concatenation, The spatial-temporal feature interaction, PNN Feature Cross Fusion |
Channel | Rayleigh Fading | Rician Fading |
---|---|---|
Path Delays (s) | [0.0, 2 × 10−5] | [0.0, 5 × 10−7] |
Average PathGains (dB) | [0.0, −2.0] | [0.0, −2.0] |
Maximum DopplerShift (Hz) | 30.0 | 50.0 |
DopplerSpectrum | doppler (‘Gaussian’, 0.6) | doppler (‘Gaussian’, 0.6) |
K-Factor | -- | 2.8 |
DirectPath DopplerShift | -- | 5.0 |
DirectPath InitialPhase | -- | 0.5 |
Dataset | RadioML2018.01A |
---|---|
Modulation Type (24 kinds) | OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC, AM-DSB-WC, AM-DSB-SC, FM, GMSK, OQPSK |
Es/N0 | −20:2:30 dB |
Data Format | 2 × 1024 |
Propagation Channel | Gaussian white noise, multipath fading, carrier frequency offset, delay spread, etc. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, T.; Gong, P.; Liu, R.; Zha, X. Modulation Recognition of Communication Signals Based on Multimodal Feature Fusion. Sensors 2022, 22, 6539. https://doi.org/10.3390/s22176539
Zhang X, Li T, Gong P, Liu R, Zha X. Modulation Recognition of Communication Signals Based on Multimodal Feature Fusion. Sensors. 2022; 22(17):6539. https://doi.org/10.3390/s22176539
Chicago/Turabian StyleZhang, Xinliang, Tianyun Li, Pei Gong, Renwei Liu, and Xiong Zha. 2022. "Modulation Recognition of Communication Signals Based on Multimodal Feature Fusion" Sensors 22, no. 17: 6539. https://doi.org/10.3390/s22176539
APA StyleZhang, X., Li, T., Gong, P., Liu, R., & Zha, X. (2022). Modulation Recognition of Communication Signals Based on Multimodal Feature Fusion. Sensors, 22(17), 6539. https://doi.org/10.3390/s22176539