E-Taste: Taste Sensations and Flavors Based on Tongue’s Electrical and Thermal Stimulation
<p>Digital taste system (<b>a</b>) implementation and (<b>b</b>) system architecture.</p> "> Figure 2
<p>Digital taste generating system (<b>a</b>) control system (<b>b</b>) tongue interface.</p> "> Figure 3
<p>Schematic diagram of e-taste.</p> "> Figure 4
<p>Thermal stimulation (<b>a</b>) heating up to 38 °C (<b>b</b>) cooling down up to 30 °C.</p> "> Figure 5
<p>Different taste sensations and flavors versus mean value of sensation (%).</p> "> Figure 6
<p>Mean value of taste sensations of 3 participants with highly sensitive taste buds.</p> "> Figure 7
<p>The average percentage of taste sensations of 23 participants with repeated experiments. Error bar depicts 90–98% CI. All data are expressed as mean ± SD <sup>⁎⁎</sup> <span class="html-italic">p</span> ≤ 0.05.</p> ">
Abstract
:1. Introduction
2. System Description
3. Experimental Procedure and Results
- The current and temperature stimulations of the e-device were checked first;
- The participants were given the table of the hedonic scale, as shown in Table 1;
- The participants were recommended to sit comfortably on the chair, hold the tongue interface, and place the silver electrodes on the tip of the human tongue;
- In the next step, the current (40–180 µA), temperature (20–38 °C and 38–20 °C), and hybrid (electrical and thermal) stimulations were given to the tip of the human tongue through silver electrodes, and the participants were asked to share their taste sensations. The stimulation for different taste sensations varies, as shown in Table 2;
- After each stimulation, the participants were asked to scale the taste sensations according to the hedonic scale;
- Between each stimulation, the participants took a break of 5 min depending on the participant’s tongue’s ability to become normal.
4. Discussion and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drewnowski, A. Taste preferences and Food Intake. Annu. Rev. Nutr. 1997, 17, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trends in the United States, Consumer Attitudes & the Supermarket. Trends—Consumer Attitudes and the Supermarket. 1994. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201300295922 (accessed on 25 May 2022).
- Logue, A.W. The Psychology of Eating and Drinking; Routledge: England, UK, 1987; pp. 308–309. [Google Scholar]
- Sanjur, D. Social and Cultural Perspectives in Nutrition; Prentice-Hall: Englewood Cliffs, NJ, USA, 1981. [Google Scholar]
- Moskowitz, H.R. Taste and Food Technology: Acceptability, Aesthetics, and Preference; Handbook of Perception; Elsevier: Amsterdam, The Netherlands, 1978; pp. 157–194. [Google Scholar]
- Drewnowski, A. Fats and Food Texture. Sensory and Hedonic Evaluations; Routledge: England, UK, 1987. [Google Scholar]
- Cooper, H.R. Texture in Dairy Products and Its Sensory Evaluation. In Food Texture; Routledge: England, UK, 2017. [Google Scholar]
- Drewnowski, A. Sweetness and Obesity. In Sweetness; Springer: London, UK, 1987. [Google Scholar]
- Tan, V.W.K.; Wee, M.S.M.; Tomic, O.; Forde, C.G. Rate-All-That-Apply (RATA) comparison of taste profiles for different sweeteners in black tea, chocolate milk, and natural yogurt. J. Food Sci. 2020, 85, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.A.R.; Rocha, L.C.R.; Ribeiro, M.N.; Ribeiro, A.P.L.; Rocha, R.A.D.; Carneiro, J.D.D.S. Effect of the food matrix on the capacity of flavor enhancers in intensifying salty taste. J. Food Sci. 2021, 86, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Greenwood, M.R. Cream and sugar: Human preferences for high-fat foods. Physiol. Behav. 1983, 30, 629–633. [Google Scholar] [CrossRef]
- Rozin, P.; Vollmecke, T.A. Food likes and dislikes. Annu. Rev. Nutr. 1986, 6, 433. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.T.; Baylis, L.L. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J. Neurosci. Off. J. Soc. Neurosci. 1994, 14, 5437. [Google Scholar] [CrossRef]
- Leventhal, A.M.; Tackett, A.P.; Whitted, L.; Jordt, S.E.; Jabba, S.V. Ice flavours and non-menthol synthetic cooling agents in e-cigarette products: A review. Tobacco Control 2022. [Google Scholar] [CrossRef]
- Mohamed, S.; Khaled, S.; Dahshan, M.; Mohamed, B.; Badr, M.; Hussein, K. A Review of Electronic Tongue for Liquid Classification. In Proceedings of the 2022 2nd International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC), Cairo, Egypt, 8–9 May 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Wang, K.; Zhuang, H.; Bing, F.; Chen, D.; Feng, T.; Xu, Z. Evaluation of eight kinds of flavor enhancer of umami taste by an electronic tongue. Food Sci. Nutr. 2021, 9, 2095–2104. [Google Scholar] [CrossRef]
- Hensel, R.C.; Braunger, M.L.; Oliveira, B.; Shimizu, F.M.; Oliveira, O.N., Jr.; Hillenkamp, M.; Riul, A., Jr.; Rodrigues, V. Controlled Incorporation of Silver Nanoparticles into Layer-by-Layer Polymer Films for Reusable Electronic Tongues. ACS Appl. Nano Mater. 2021, 4, 14231–14240. [Google Scholar] [CrossRef]
- Ross, C.F. Considerations of the use of the electronic tongue in sensory science. Curr. Opin. Food Sci. 2021, 40, 87–93. [Google Scholar] [CrossRef]
- Kumar, S.; Ghosh, A.; Tudu, B.; Bandyopadhyay, R. A circuit model estimation of voltammetric taste measurement system for black tea. Measurement 2019, 140, 609–621. [Google Scholar] [CrossRef]
- Yin, T.; Yang, Z.; Miao, N.; Zhang, X.; Li, Q.; Wang, Z.; Li, C.; Sun, X.; Lan, Y. Development of a remote electronic tongue system combined with the VMD-HT feature extraction method for honey botanical origin authentication. Measurement 2021, 171, 108555. [Google Scholar] [CrossRef]
- Maynes-Aminzade, D. Edible bits: Seamless interfaces between people, data and food. In Proceedings of the Conference on Human Factors in Computing Systems (CHI’05)—Extended Abstracts, Portland, OR, USA, 2–7 April 2005. [Google Scholar]
- Rolls, E.T. Brain mechanisms underlying flavour and appetite. Philos. Trans. Biol. Sci. 2006, 361, 1123–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajdukovi, D. The relationship between electrode area and sensory qualities in electrical human tongue stimulation. Acta Oto-Laryngol. 1984, 98, 152–157. [Google Scholar] [CrossRef]
- Cardello, A.V. Comparison of taste qualities elicited by tactile, electrical, and chemical stimulation of single human taste papillae. Percept. Psychophys. 1981, 29, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Kettaneh, A.; Pariès, J.; Stirnemann, J.; Steichen, O.; Eclache, V.; Fain, O.; Thomas, M. Clinical and biological features associated with taste loss in internal medicine patients. A cross-sectional study of 100 cases. Appetite 2005, 44, 163–169. [Google Scholar] [CrossRef]
- Cruz, A.; Green, B.G. Thermal stimulation of taste. Nature 2000, 403, 889–892. [Google Scholar] [CrossRef]
- Lawless, H.T.; Stevens, D.A.; Chapman, K.W.; Anne, K. Metallic Taste from Electrical and Chemical Stimulation. Chem. Senses 2005, 30, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Talavera, K.; Ninomiya, Y.; Winkel, C.; Voets, T.; Nilius, B. Influence of temperature on taste perception. Cell. Mol. Life Ences CMLS 2007, 64, 377–381. [Google Scholar] [CrossRef]
- Yeomans, M.R.; Tepper, B.J.; Rietzschel, J.; Prescott, J. Human hedonic responses to sweetness: Role of taste genetics and anatomy. Physiol. Behav. 2007, 91, 264–273. [Google Scholar] [CrossRef]
- Cheok, A.D.; Karunanayaka, K.; Samshir, N.A.; Johari, N. Initial basic concept of thermal sweet taste interface. In Proceedings of the 12th International Conference on Advances in Computer Entertainment Technology, Iskandar, Malaysia, 16–19 November 2015. [Google Scholar]
- Ranasinghe, N.; Do, Y.L. Virtual Sweet: Simulating Sweet Sensation Using Thermal Stimulation on the Tip of the Tongue. In Proceedings of the Symposium on User Interface Software & Technology, Tokyo, Japan, 16–19 October 2016. [Google Scholar]
- Ranasinghe, N.; Karunanayaka, K.; Cheok, A.D.; Fernando, O.N.N.; Gopalakrishnakone, P. Digital Taste and Smell Communication. In Proceedings of the International Conference on Body Area Networks, Beijing, China, 7–10 November 2011. [Google Scholar]
- Karunanayaka, K.; Johari, N.; Hariri, S.; Camelia, H.; Bielawski, K.S.; Cheok, A.D. New Thermal Taste Actuation Technology for Future Multisensory Virtual Reality and Internet. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1496–1505. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, N.; Cheok, A.D.; Fernando, O.; Nii, H.; Ponnampalam, G. Digital Taste: Electronic Stimulation of Taste Sensations; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Ranasinghe, R.A.N. Digitally Stimulating the Sensation of Taste through Electrical and Thermal Stimulation. PhD Thesis, National University of Singapore, Singapore, 2012. [Google Scholar]
- Bajec, M.R.; Pickering, G.J. Thermal taste, PROP responsiveness, and perception of oral sensations. Physiol. Behav. 2008, 95, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, C.; Narumi, T.; Tanikawa, T.; Hirose, M. Affecting tumbler: Affecting our flavor perception with thermal feedback. In Proceedings of the 11th Conference on Advances in Computer Entertainment Technology, Funchal, Portugal, 11–14 November 2014; Association for Computing Machinery: New York, NY, USA, 2014; p. 19. [Google Scholar]
- Mennella, J.A.; Spector, A.C.; Reed, D.R.; Coldwell, S.E. The bad taste of medicines: Overview of basic research on bitter taste. Clin. Ther. 2013, 35, 1225–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
0 | 1 | |||||
---|---|---|---|---|---|---|
−3 | −2 | −1 | 0 | 1 | 2 | 3 |
Extreme dislike | Moderate dislike | Slight dislike | No sensation | Slight sensation | Moderate sensation | Extreme sensation |
Taste Sensations | Magnitude/Range of Sensation |
---|---|
Sweet | 25–35 °C and 35–25 °C |
Sour | 60–180 µA or 20–30 °C |
Salty | 40–70 µA |
Sprite/soda water | 60–180 µA and 30–20 °C |
Bitter | 60–140 µA |
Mint | Below 25 °C |
Spicy | Above 33 °C |
Sweet-sour | 60–180 µA and 25–35 °C and 35–25 °C |
Salty-sweet | 40–70 µA and 25–35 °C and 35–25 °C |
Salty-mint | 40–70 µA and below 25 °C |
Taste Sensations | Mean Value ± Standard Error of the Mean |
---|---|
Sweet | 0.463 ± 0.1 |
Sour | 0.857± 0.07 |
Salty | 0.855 ± 0.07 |
Bitter | 0.865 ± 0.07 |
Sprite | 0.852 ± 0.07 |
Mint | 0.411 ± 0.1 |
Spicy | 0.755 ± 0.08 |
Sweet-sour | 0.285 ± 0.09 |
Salty-sweet | 0.297 ± 0.09 |
Salty-mint | 0.415 ± 0.1 |
Soda water | 0.714 ± 0.09 |
Source of Variation (SV) | Sum of Squares (SS) | Degree of Freedom (df) | Mean Square (MS) | Fstatistics | p-Value | Fcrit |
---|---|---|---|---|---|---|
Between groups | 13.17 | 10 | 1.32 | 7.2 | 6.2 × 10−10 | 1.87 |
Within groups | 44.28 | 242 | 0.18 | |||
Total | 57.45 | 252 |
Title of the Research Paper | Senses Generated | Revised Sensation | Excitation Constraints | Reference |
---|---|---|---|---|
Metallic Taste from Electrical and Chemical Stimulation |
| Nil | Nil | [27] |
Thermal stimulation of taste |
| Nil |
| [26] |
Thermal Taste Actuation Technology |
| Significant improvements in the sweetness of sucrose-based sweet solutions were achieved. |
| [33] |
Digital taste: electronic stimulation of taste sensations |
| Nil |
| [34] |
Digital Taste and Smell Communication |
| Nil | Cooling (35–20 °C) | [32] |
Virtual sweet: Simulating sweet sensation using thermal stimulation on the tip of the tongue |
| Nil | Heating to Cooling (20–35 °C and 35–20 °C) Cooling to Heating (35–20 °C and 20–35 °C) | [31] |
E-taste: Taste sensations and flavors based on tongue’s electrical and thermal stimulation (this paper) |
| Generate various types of flavors by combining different taste sensations |
| Current work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, A.; Liu, Y.; Wang, Y.; Gao, H.; Wang, H.; Zhang, J.; Li, G. E-Taste: Taste Sensations and Flavors Based on Tongue’s Electrical and Thermal Stimulation. Sensors 2022, 22, 4976. https://doi.org/10.3390/s22134976
Ullah A, Liu Y, Wang Y, Gao H, Wang H, Zhang J, Li G. E-Taste: Taste Sensations and Flavors Based on Tongue’s Electrical and Thermal Stimulation. Sensors. 2022; 22(13):4976. https://doi.org/10.3390/s22134976
Chicago/Turabian StyleUllah, Asif, Yifan Liu, You Wang, Han Gao, Hengyang Wang, Jin Zhang, and Guang Li. 2022. "E-Taste: Taste Sensations and Flavors Based on Tongue’s Electrical and Thermal Stimulation" Sensors 22, no. 13: 4976. https://doi.org/10.3390/s22134976
APA StyleUllah, A., Liu, Y., Wang, Y., Gao, H., Wang, H., Zhang, J., & Li, G. (2022). E-Taste: Taste Sensations and Flavors Based on Tongue’s Electrical and Thermal Stimulation. Sensors, 22(13), 4976. https://doi.org/10.3390/s22134976