A Respiratory Motion Estimation Method Based on Inertial Measurement Units for Gated Positron Emission Tomography
<p>The motion measurement system (MMS) and the directions of measurement axes. Inset (<b>a</b>): the novel multinodal measurement system, which consists of four MEMS-based motion measurement nodes and three ECG electrodes. Inset (<b>b</b>): directions of the measurement axes with respect to the measured subject.</p> "> Figure 2
<p>Flow diagram of the respiration motion estimation algorithm.</p> "> Figure 3
<p>MMS shape signal for subject 3.</p> "> Figure 4
<p>MMS polarity and magnitude signal for subject 3.</p> "> Figure 5
<p>RPM and MMS waveforms corresponding to a single respiratory cycle at scan time <span class="html-italic">t</span> = 0 s–8 s for subject 8.</p> "> Figure 6
<p>MMS and RPM respiration signals for subject 3.</p> "> Figure 7
<p>The first 500 s of the MMS and RPM respiration signals corresponding to subjects 1, 5 and 8.</p> "> Figure 8
<p>A visualization of (<b>A</b>) MMS-gated, (<b>B</b>) RPM-gated reconstructed PET images showing the region of the hot spot and (<b>C</b>) profiles between the MMS-gated and RPM-gated reconstructed images.</p> "> Figure 9
<p>MMS vs. RPM respiratory waveforms for subject 6. The MMS signal quality deteriorates significantly in the second half of the measurement due to poor attachment of the sensor nodes.</p> "> Figure 10
<p>The first 500 s of the calibrated MMS and the baseline drift-corrected RPM respiration signals corresponding to subjects 1, 5 and 8.</p> ">
Abstract
:1. Introduction
Previous Works
2. Materials and Methods
2.1. Hardware: A Multinodal Motion Measurement System
2.2. MMS Measurement Locations
2.3. Positron Emission Tomography Study
2.3.1. Subject Details
2.3.2. PET/CT System
2.3.3. PET/CT Imaging Protocol for RGD
2.3.4. PET/CT Imaging Protocol and Image Reconstruction for [O]
2.3.5. Gated PET Image Reconstruction for RGD
2.3.6. PET Data Preservation
2.3.7. PET Image Analysis
2.4. Respiratory Motion Estimation Algorithm for the MMS
2.4.1. Shape Signal
2.4.2. Polarity and Magnitude Signal
2.4.3. Fusion Process
3. Results
3.1. Comparison Metrics
3.2. Numerical Results
3.3. PET Gating Results
4. Discussion
4.1. Logistics and the Attachment of Sensor Nodes
4.2. Baseline Drift in Respiratory Signals
4.3. Applicability to Respiratory-Gated PET Studies
4.4. Real-Time Operation Capability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
MEMS | Microelectromechanical Systems |
IMU | Inertial Measurement Unit |
PET | Positron Emission Tomography |
CT | Computed Tomography |
ECG | Electrocardiography |
MMS | Motion Measurement System |
RPM | Real-time Position Management |
PCA | Principal Component Analysis |
ICA | Independent Component Analysis |
VOI | Volume of Interest |
CR | Contrast Ratio |
SNR | Signal to Noise Ratio |
CV | Coefficient of Variation |
CNR | Contrast to Noise Ratio |
References
- Lassen, M.L.; Kwiecinski, J.; Slomka, P.J. Gating Approaches in Cardiac PET Imaging. PET Clin. 2019, 14, 271–279. [Google Scholar] [CrossRef]
- Rubeaux, M.; Doris, M.K.; Alessio, A.; Slomka, P.J. Enhancing Cardiac PET by Motion Correction Techniques. Curr. Cardiol. Rep. 2017, 19, 14. [Google Scholar] [CrossRef]
- Pépin, A.; Daouk, J.; Bailly, P.; Hapdey, S.; Meyer, M.-E. Management of respiratory motion in PET/computed tomography. Nucl. Med. Commun. 2014, 35, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Nehmeh, S.A.; Erdi, Y.E. Respiratory Motion in Positron Emission Tomography/Computed Tomography: A Review. Semin. Nucl. Med. 2008, 38, 167–176. [Google Scholar] [CrossRef]
- Massaroni, C.; Nicolò, A.; Lo Presti, D.; Sacchetti, M.; Silvestri, S.; Schena, E. Contact-Based Methods for Measuring Respiratory Rate. Sensors 2019, 19, 908. [Google Scholar] [CrossRef] [Green Version]
- Cesareo, A.; Biffi, E.; Cuesta-Frau, D.; D’Angelo, M.G.; Aliverti, A. A novel acquisition platform for long-term breathing frequency monitoring based on inertial measurement units. Med. Biol. Eng. Comput. 2020, 58, 785–804. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, A.; Spirandeli, A.F.; Moraes, R.; Zarzoso, V. Respiratory Waveform Estimation From Multiple Accelerometers: An Optimal Sensor Number and Placement Analysis. IEEE J. Biomed. Health 2019, 23, 1507–1515. [Google Scholar] [CrossRef] [PubMed]
- Fekr, A.R.; Janidarmian, M.; Radecka, K.; Zilic, Z. A Medical Cloud-Based Platform for Respiration Rate Measurement and Hierarchical Classification of Breath Disorders. Sensors 2014, 14, 11204–11224. [Google Scholar] [CrossRef] [PubMed]
- Jafari Tadi, M.; Koivisto, T.; Pänkäälä, M.; Paasio, A. Accelerometer-based method for extracting respiratory and cardiac gating information for dual gating during nuclear medicine imaging. Int. J. Biomed. Imaging 2014, 2014, 690124. [Google Scholar] [CrossRef]
- Bates, A.; Ling, M.J.; Mann, J.; Arvind, D.K. Respiratory rate and flow waveform estimation from tri-axial accelerometer data. In Proceedings of the 2010 International Conference on Body Sensor Networks, Singapore, 7–9 June 2010. [Google Scholar]
- Sung, J.; Yoon, M.; Huh, H.D.; Shin, D.O.; Chung, W.K.; Kim, D.W. Examination of a Micro-electro-mechanical System Based on a Portable Respiratory Monitoring System. J. Korean Phys. Soc. 2015, 67, 752–756. [Google Scholar] [CrossRef]
- Yoon, J.-W.; Noh, Y.-S.; Kwon, Y.-S.; Kim, W.-K.; Yoon, H.-R. Improvement of Dynamic Respiration Monitoring Through Sensor Fusion of Accelerometer and Gyro-sensor. J. Electr. Eng. Technol. 2014, 9, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Beck, S.; Laufer, B.; Krueger-Ziolek, S.; Möller, K. Measurement of respiratory rate with inertial measurement units. Curr. Dir. Biomed. Eng. 2020, 58, 785–804. [Google Scholar]
- Karacocuk, G.; Höflinger, F.; Zhang, R.; Reindl, L.M.; Laufer, B.; Möller, K.; Röell, M.; Zdzieblik, D. Inertial Sensor-Based Respiration Analysis. IEEE Trans. Instrum. Meas. 2019, 68, 4268–4275. [Google Scholar] [CrossRef]
- Wang, S.; Liu, M.; Pang, B.; Li, P.; Yao, Z.; Zhang, X.; Chen, H. A new physiological signal acquisition patch designed with advanced respiration monitoring algorithm based on 3-axis accelerator and gyroscope. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018. [Google Scholar]
- Shen, C.-L.; Huang, T.-H.; Hsu, P.-C.; Ko, Y.-C.; Chen, F.-L.; Wang, W.-C.; Kao, T.; Chan, C.-T. Respiratory Rate Estimation by Using ECG, Impedance, and Motion Sensing in Smart Clothing. J. Med. Biol. Eng. 2017, 37, 826–842. [Google Scholar] [CrossRef] [PubMed]
- Cesareo, A.; Previtali, Y.; Biffi, E.; Aliverti, A. Assessment of Breathing Parameters Using an Inertial Measurement Unit (IMU)-Based System. Sensors 2019, 19, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaidhani, A.; Moon, K.S.; Ozturk, Y.; Lee, S.Q.; Youm, W. Extraction and Analysis of Respiratory Motion Using Wearable Inertial Sensor System during Trunk Motion. Sensors 2017, 17, 2932. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.; Jung, Y.-J.; Choi, S.H.; Kim, D.W. Design and Evaluation of a MEMS Magnetic Field Sensor-Based Respiratory Monitoring and Training System for Radiotherapy. Sensors 2018, 18, 2742. [Google Scholar] [CrossRef] [Green Version]
- Cesareo, A.; Nido, S.A.; Biffi, E.; Gandossini, S.; D‘Angelo, M.G.; Aliverti, A. A Wearable Device for Breathing Frequency Monitoring: A Pilot Study on Patients with Muscular Dystrophy. Sensors 2020, 20, 5346. [Google Scholar] [CrossRef] [PubMed]
- Jafari Tadi, M.; Lehtonen, E.; Teuho, J.; Koskinen, J.; Schultz, J.; Siekkinen, R.; Koivisto, T.; Pänkäälä, M.; Teräs, M.; Klén, R. A Computational Framework for Data Fusion in MEMS-Based Cardiac and Respiratory Gating. Sensors 2019, 19, 4137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011. [Google Scholar]
- Jafari Tadi, M.; Teuho, J.; Lehtonen, E.; Saraste, A.; Pänkäälä, M.; Koivisto, T.; Teräs, M. A novel dual gating approach using joint inertial sensors: Implications for cardiac PET imaging. Phys. Med. Biol. 2017, 62, 8080–8101. [Google Scholar] [CrossRef] [Green Version]
- Grönman, M.; Tarkia, M.; Kiviniemi, T.; Halonen, P.; Kuivanen, A.; Savunen, T.; Tolvanen, T.; Teuho, J.; Käkelä, M.; Metsälä, O.; et al. Imaging of αvβ3 integrin expression in experimental myocardial ischemia with [68Ga]NODAGA-RGD positron emission tomography. J. Transl. Med. 2017, 15, 144. [Google Scholar] [CrossRef] [PubMed]
- Hsu, D.F.C.; Ilan, E.; Peterson, W.T.; Uribe, J.; Lubberink, M.; Levin, C.S. Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System. J. Nucl. Med. 2017, 58, 1511–1518. [Google Scholar] [CrossRef]
- Le Meunier, L.; Slomka, P.J.; Dey, D.; Ramesh, A.; Thomson, L.E.J.; Hayes, S.W.; Friedman, J.D.; Cheng, V.; Germano, G.; Berman, D.S. Motion frozen 18F-FDG cardiac PET. J. Nucl. Cardiol. 2011, 18, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slomka, P.J.; Rubeaux, M.; Le Meunier, L.; Dey, D.; Lazewatsky, J.L.; Pan, T.; Dweck, M.R.; Newby, D.E.; Germano, G.; Berman, D.S. Dual-Gated Motion-Frozen Cardiac PET with Flurpiridaz F 18. J. Nucl. Med. 2015, 56, 1876–1881. [Google Scholar] [CrossRef] [Green Version]
- Lamare, F.; Le Maitre, A.; Dawood, M.; Schäfers, K.P.; Fernandez, P.; Rimoldi, O.E.; Visvikis, D. Evaluation of respiratory and cardiac motion correction schemes in dual gated PET/CT cardiac imaging. Med. Phys. 2014, 41, 072504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welford, B.P. Note on a method for calculating corrected sums of squares and products. Technometrics 1962, 4, 419–420. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, B.; Wang, L.; Zu, C.; Lalush, D.S.; Lin, W.; Wu, X.; Zhou, J.; Shen, D.; Zhou, L. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage 2018, 174, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Versaci, M.; Morabito, F.C.; Angiulli, G. Adaptive Image Contrast Enhancement by Computing Distances into a 4-Dimensional Fuzzy Unit Hypercube. IEEE Access 2017, 5, 26922–26931. [Google Scholar] [CrossRef]
- Feng, L.; Li, H.; Gao, Y.; Zhang, Y. A Color Image Segmentation Method Based on Region Salient Color and Fuzzy C-Means Algorithm. Circuits Syst. Signal Process. 2020, 39, 586–610. [Google Scholar] [CrossRef]
- Kumar, M.; Alshehri, M.; AlGhamdi, R.; Sharma, P.; Deep, V. A DE-ANN Inspired Skin Cancer Detection Approach Using Fuzzy C-Means Clustering. Mob. Netw. Appl. 2020, 25, 1319–1329. [Google Scholar] [CrossRef]
No. Subjects | Age (Y) | Weight (kg) | Height (m) | Dose (MBq) | |
---|---|---|---|---|---|
Mean | 8 (8 males) | 64.3 | 89.5 | 1.75 | 197.5 |
SD | 8.1 | 16.3 | 0.06 | 19.0 |
Algorithm Block | Parameter | Symbol | Unit | Value |
---|---|---|---|---|
All | Downsampled sampling frequency | [Hz] | 100.0 | |
Shape | Moving average window length | [sample] | ||
Shape | Circular buffer size | [sample] | ||
Pol. & Magn. | Gravitational acceleration | g | [] | 9.81 |
Pol. & Magn. | Cutoff frequency | [Hz] | ||
Fusion | Moving average window length | [sample] | ||
Fusion | Moving average window length | [sample] | ||
Fusion | Moving average window length | [sample] |
Subj. | RPM Magn. (cm) | MMS Magn. (cm) | Pol. | MAE Amp. (cm) | MAE fB |
---|---|---|---|---|---|
1 | 0.52 | 0.67 | −1.0 | 0.17 | 0.62 |
2 | 0.97 | 0.65 | 1.0 | 0.23 | 0.78 |
3 | 1.14 | 1.03 | 1.0 | 0.23 | 0.69 |
4 | 1.74 | 1.18 | 1.0 | 0.18 | 0.20 |
5 | 0.68 | 1.00 | −1.0 | 0.16 | 0.36 |
6 | 0.68 | 1.10 | 1.0 | 0.20 | 0.49 |
7 | 1.26 | 1.02 | −1.0 | 0.46 | 0.28 |
8 | 1.17 | 1.24 | −1.0 | 0.26 | 0.09 |
Mean (±SD) | 0.24 (±0.09) | 0.44 (±0.23) |
Article | Test Subject Group | MAE fB (1/min) |
---|---|---|
This work | 8 subjects with acute myocardial infarction | 0.44 (±0.23) |
[6] | 8 healthy volunteers | 0.5 (±0.6) |
[10] | 1 post-op. patient overnight measurement | 0.38 for 45% of data |
[15] | 7 healthy volunteers | 0.768 |
[16] | 15 healthy volunteers | 0.7 (±1.0) |
[17] | 8 healthy volunteers | 1.00 (±1.24) |
[20] | 15 neuromuscular patients | 0.79 |
Subj. | Bin 1 | Bin 2 | Bin 3 | Bin 4 | Bin 5 | Lost Data |
---|---|---|---|---|---|---|
1 | 9.57% | 13.74% | 14.93% | 12.45% | 9.65% | 39.66% |
2 | 10.27% | 11.98% | 13.58% | 12.58% | 11.79% | 39.80% |
3 | 7.81% | 10.35% | 13.96% | 15.62% | 12.38% | 39.90% |
4 | 9.67% | 9.05% | 9.85% | 12.32% | 19.17% | 39.94% |
5 | 9.59% | 9.22% | 11.47% | 13.10% | 16.63% | 40.00% |
6 | 10.94% | 11.95% | 12.73% | 13.02% | 11.77% | 39.59% |
7 | 11.01% | 11.42% | 11.90% | 13.14% | 12.53% | 40.00% |
8 | 3.40% | 4.00% | 5.86% | 15.01% | 32.34% | 39.39% |
Mean | 9.03% | 10.21% | 11.78% | 13.40% | 15.78% | 39.78% |
SD | 2.33% | 2.76% | 2.69% | 1.15% | 6.87% | 0.20% |
Subj. | Bin 1 | Bin 2 | Bin 3 | Bin 4 | Bin 5 | Lost Data |
---|---|---|---|---|---|---|
1 | 6.83% | 9.63% | 12.68% | 14.52% | 16.78% | 39.56% |
2 | 9.74% | 11.24% | 10.99% | 13.27% | 14.90% | 39.86% |
3 | 10.22% | 12.60% | 12.16% | 12.80% | 12.35% | 39.87% |
4 | 9.70% | 9.71% | 10.27% | 12.00% | 18.44% | 39.89% |
5 | 8.18% | 9.31% | 11.07% | 15.03% | 16.43% | 39.98% |
6 | 7.83% | 9.96% | 16.67% | 13.02% | 12.54% | 39.98% |
7 | 20.30% | 7.13% | 8.54% | 10.33% | 13.74% | 39.96% |
8 | 13.96% | 5.28% | 6.06% | 13.88% | 29.37% | 31.45% |
Mean | 10.84% | 9.36% | 11.05% | 13.11% | 16.82% | 38.82% |
SD | 4.10% | 2.13% | 2.90% | 1.39% | 5.15% | 2.79% |
Subj. | CR | SNR | CV | CNR |
---|---|---|---|---|
1 | 0.980296 | 17.02421 | 0.238911 | −0.34218 |
2 | 0.817972 | 8.759339 | 0.177112 | −1.94926 |
3 | 0.839961 | 10.3916 | 0.234946 | −1.97993 |
4 | 0.926529 | 13.84539 | 0.236123 | −1.09789 |
5 | 0.933141 | 12.11581 | 0.204299 | −0.86809 |
6 | 0.807438 | 14.14016 | 0.283288 | −3.37222 |
7 | 0.871556 | 9.918627 | 0.192966 | −1.46174 |
8 | 0.784991 | 9.227095 | 0.461774 | −2.52731 |
Mean | 0.870236 | 11.92778 | 0.253677 | −1.69983 |
SD | 0.065287 | 2.699771 | 0.084443 | 0.906661 |
Subj. | CR | SNR | CV | CNR |
---|---|---|---|---|
1 | 0.996192 | 3.685625 | 0.394421 | −0.01409 |
2 | 0.805106 | 2.726002 | 0.358326 | −0.65989 |
3 | 0.798347 | 2.833864 | 0.356364 | −0.7158 |
4 | 0.953703 | 5.678192 | 0.32288 | −0.27564 |
5 | 0.945216 | 4.246757 | 0.301181 | −0.24614 |
6 | 0.86365 | 5.090021 | 0.327836 | −0.80359 |
7 | 0.810481 | 3.731079 | 0.399166 | −0.87246 |
8 | 0.797792 | 6.173485 | 0.59685 | −1.56472 |
Mean | 0.871311 | 4.270628 | 0.382128 | −0.64404 |
SD | 0.076417 | 1.191511 | 0.087169 | 0.450218 |
Subj. | CR | SNR | CV | CNR |
---|---|---|---|---|
1 | 0.938885 | 4.076106 | 0.338815 | −0.26532 |
2 | 0.789202 | 2.50273 | 0.33396 | −0.66849 |
3 | 0.828536 | 2.714587 | 0.360038 | −0.56178 |
4 | 0.989893 | 8.167109 | 0.288466 | −0.08339 |
5 | 0.936245 | 4.774381 | 0.309522 | −0.32512 |
6 | 0.891802 | 4.701099 | 0.342195 | −0.57036 |
7 | 0.893655 | 4.872468 | 0.280067 | −0.57982 |
8 | 0.806291 | 6.709808 | 0.569189 | −1.61201 |
Mean | 0.884314 | 4.814786 | 0.352782 | −0.58329 |
SD | 0.066342 | 1.773032 | 0.085762 | 0.43067 |
Subj. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Mean (±SD) |
---|---|---|---|---|---|---|---|---|---|
Non-calib. | 0.17 | 0.23 | 0.23 | 0.18 | 0.16 | 0.20 | 0.46 | 0.26 | 0.24 (±0.09) |
Calib. | 0.08 | 0.13 | 0.14 | 0.08 | 0.05 | 0.11 | 0.10 | 0.08 | 0.10 (±0.0008) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehtonen, E.; Teuho, J.; Koskinen, J.; Jafari Tadi, M.; Klén, R.; Siekkinen, R.; Rives Gambin, J.; Vasankari, T.; Saraste, A. A Respiratory Motion Estimation Method Based on Inertial Measurement Units for Gated Positron Emission Tomography. Sensors 2021, 21, 3983. https://doi.org/10.3390/s21123983
Lehtonen E, Teuho J, Koskinen J, Jafari Tadi M, Klén R, Siekkinen R, Rives Gambin J, Vasankari T, Saraste A. A Respiratory Motion Estimation Method Based on Inertial Measurement Units for Gated Positron Emission Tomography. Sensors. 2021; 21(12):3983. https://doi.org/10.3390/s21123983
Chicago/Turabian StyleLehtonen, Eero, Jarmo Teuho, Juho Koskinen, Mojtaba Jafari Tadi, Riku Klén, Reetta Siekkinen, Joaquin Rives Gambin, Tuija Vasankari, and Antti Saraste. 2021. "A Respiratory Motion Estimation Method Based on Inertial Measurement Units for Gated Positron Emission Tomography" Sensors 21, no. 12: 3983. https://doi.org/10.3390/s21123983
APA StyleLehtonen, E., Teuho, J., Koskinen, J., Jafari Tadi, M., Klén, R., Siekkinen, R., Rives Gambin, J., Vasankari, T., & Saraste, A. (2021). A Respiratory Motion Estimation Method Based on Inertial Measurement Units for Gated Positron Emission Tomography. Sensors, 21(12), 3983. https://doi.org/10.3390/s21123983