Creating a Scoring System with an Armband Wearable Device for Table Tennis Forehand Loop Training: Combined Use of the Principal Component Analysis and Artificial Neural Network
<p>Placement of the Myo Armband on the forearm (<b>A</b>) and the direction of IMU sensors (<b>B</b>).</p> "> Figure 2
<p>Forearm angular velocity measured from a gyroscope reading of the <span class="html-italic">z</span>-axis.</p> "> Figure 3
<p>Flowchart of modeling steps.</p> "> Figure 4
<p>Artificial neural network (ANN) architecture.</p> "> Figure 5
<p>PCA loading plot of the first two principal components.</p> "> Figure 6
<p>Radar graph for an expert and two novices (±1 SD gray shaded areas). (<b>A</b>) New expert and (<b>B</b>) new novice 1: sufficient wrist stability for paddle control, lack of attack power. (<b>C</b>) New novice 2: lack of grip strength and wrist stability for racquet control.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Instruments and Equipment
2.3. Data Acquisition and Processing
2.4. Feature Selection and Modeling
2.5. Model Evaluation
2.6. Table Tennis Skill Scoring System
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Helmer, R.; Farrow, D.; Lucas, S.; Higgerson, G.; Blanchonette, I. Can interactive textiles influence a novice’s throwing technique? Procedia Eng. 2010, 2, 2985–2990. [Google Scholar] [CrossRef] [Green Version]
- Laumakis, P.J.; McCormack, K. Analyzing Exercise Training Effect and Its Impact on Cardiorespiratory and Cardiovascular Fitness. J. Stat. Educ. 2014, 22, 2. [Google Scholar] [CrossRef]
- Raina, A.; Lakshmi, T.G.; Murthy, S. CoMBaT: Wearable Technology Based Training System for Novice Badminton Players. In Proceedings of the 2017 IEEE 17th International Conference on Advanced Learning Technologies, Timisoara, Romania, 3–7 July 2017; pp. 153–157. [Google Scholar]
- Abreu, J.G.; Teixeira, J.M.; Figueiredo, L.S.; Teichrieb, V. Evaluating Sign Language Recognition Using the Myo Armband. In Proceedings of the 2016 XVIII Symposium on Virtual and Augmented Reality (SVR), Engramado, Brazil, 21–24 June 2016; pp. 64–70. [Google Scholar]
- Boyali, A.; Hashimoto, N.; Matsumoto, O. Hand posture and gesture recognition using myo armband and spectral collaborative representation based classification. In Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 27–30 October 2015; pp. 200–201. [Google Scholar]
- Masson, S.; Fortuna, F.; Moura, F.; Soriano, D. Integrating myo armband for the control of myoelectric upper limb prosthesis. In Proceedings of the XXV Congresso Brasileiro de Engenharia Biomédica, Paraná, Brazil, 16–20 October 2016. [Google Scholar]
- Kräuter, N.; Lösing, S.; Bauer, G.; Schwering, L.; Seuter, M. Supporting safety in cycling groups using led–augmented gestures. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing Adjunct, Heidelberg, Germany, 12–16 September 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 889–892. [Google Scholar]
- Sathiyanarayanan, M.; Mulling, T.; Nazir, B. Controlling a robot using a wearable device (MYO). Int. J. Eng. Dev. Res. 2015, 3, 1–6. [Google Scholar]
- Grabczyński, A.; Szklanny, K.; Wrzeciono, P. Applying EMG technology in medial and lateral elbow enthesopathy treatment using Myo motion controller. Australas. Phys. Eng. Sci. Med. 2019, 42, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Sathiyanarayanan, M.; Rajan, S. Myo armband for physiotherapy healthcare: A case study using gesture recognition application. In Proceedings of the 2016 8th International Conference on Communication Systems and Networks, Bangalore, India, 5–9 January 2016; pp. 1–6. [Google Scholar]
- Wong, P.; Dooley, L. Tracking table tennis balls in real match scenes for umpiring applications. Br. J. Math. Comput. Sci. 2011, 1, 228–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gastinger, R.; Litzenberger, S.; Sabo, A. Design, development and construction of a monitoring table tennis net. Procedia Eng. 2011, 13, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Blank, P.; Kautz, T.; Eskofier, B.M. Ball impact localization on table tennis rackets using piezo–electric sensors. In Proceedings of the 2016 ACM International Symposium on New Ideas, New Paradigms and Reflections on Programming and Software; Association for Computing Machinery: New York, NY, USA, 2016; pp. 72–79. [Google Scholar]
- Blank, P.; Groh, B.H.; Eskofier, B.M. Ball speed and spin estimation in table tennis using a racket–mounted inertial sensor. In Proceedings of the 2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 2–9. [Google Scholar]
- Nonaka, Y.; Irie, K.; Ando, S.; Yamada, Y. Application of IMU–based Motion Measurement Methods to Table Tennis Coaching. In Proceedings of the Symposium on Sports and Human Dynamics; Japan Society of Mechanical Engineers: Tokyo, Japan, 2018; Volume 2018, p. B-2. [Google Scholar]
- Blank, P.; Hoßbach, J.; Schuldhaus, D.; Eskofier, B.M. Sensor–based stroke detection and stroke type classification in table tennis. In Proceedings of the 2015 ACM International Symposium on Wearable Computers, Osaka, Japan, 9–11 September 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 93–100. [Google Scholar]
- Tabrizi, S.S.; Pashazadeh, S.; Javani, V. Data acquired by a single object sensor for the detection and quality evaluation of table tennis forehand strokes. Data Brief 2020, 33, 106504. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Anand, A.; Srivastava, R.; Kaligounder, L. Wearable audio and IMU based shot detection in racquet sports. arXiv 2018, arXiv:1805.05456. [Google Scholar]
- Bańkosz, Z.; Winiarski, S. Using Wearable Inertial Sensors to Estimate Kinematic Parameters and Variability in the Table Tennis Topspin Forehand Stroke. Appl. Bionics Biomech. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Wang, H.; Li, L.; Chen, H.; Li, Y.; Qiu, S.; Gravina, R. Motion Recognition for Smart Sports Based on Wearable Inertial Sensors. In Proceedings of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Florence, Italy, 2–3 October 2019; Springer: Cham, Switzerland, 2019; pp. 114–124. [Google Scholar]
- Yin, C. Application of accelerometer in table tennis action recognition. In Proceedings of the 5th International Conference on Electrical and Electronics Engineering and Computer Science, Beijing, China, 29–30 June 2018. [Google Scholar]
- Dokic, K.; Mesic, T.; Martinovic, M. Table Tennis Forehand and Backhand Stroke Recognition Based on Neural Network. In Proceedings of the Communicational Conference on Advances in Computinger and Informataion Science, Valletta, Malta, 24–25 April 2020; Springer: Singapore, 2020; pp. 24–35. [Google Scholar]
- Fu, Z.; Shu, K.-I.; Zhang, H. Ping Pong Motion Recognition based on Smart Watch. In Proceedings of the 3rd International Conference on Mechatronics Engineering and Information Technology, Dalian, China, 29–30 March 2019; Atliantis Press: Beijijng, China, 2019. [Google Scholar]
- Liu, R.; Wang, Z.; Shi, X.; Zhao, H.; Qiu, S.; Li, J.; Yang, N. Table Tennis Stroke Recognition Based on Body Sensor Network. In Proceedings of the International Conference on Internet and Distributed Computing Systems, Naples, Italy, 10–12 October 2019; Springer: Cham, Switzerland, 2019; pp. 1–10. [Google Scholar]
- Zhang, H.; Fu, Z.; Shu, K.-I. Recognizing ping–pong motions using inertial data based on machine learning classification algorithms. IEEE Access 2019, 7, 167055–167064. [Google Scholar] [CrossRef]
- Lim, S.-M.; Oh, H.-C.; Kim, J.; Lee, J.; Park, J. LSTM-Guided Coaching Assistant for Table Tennis Practice. Sensors 2018, 18, 4112. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-K.; Wu, M.-T.; Huang, C.-H.; Wu, J.-H.; Guo, L.-Y.; Wu, W.-L. The analysis of upper limb movement and emg activation during the snatch under various loading conditions. J. Mech. Med. Biol. 2013, 13, 1350010. [Google Scholar] [CrossRef]
- Kondrič, M.; Furjan-Mandić, G.; Medved, V. Myoelectric comparison of table tennis forehand stroke using different ball sizes. Acta. Univ. Palacki. Olomuc. Gymn. 2006, 36, 25–31. [Google Scholar]
- Meghdadi, N.; Yalfani, A.; Minoonejad, H. Electromyographic analysis of shoulder girdle muscle activation while performing a forehand topspin in elite table tennis athletes with and without shoulder impingement syndrome. J. Shoulder Elb. Surg. 2019, 28, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
- Chanavirut, R.; Udompanich, N.; Udom, P.; Yonglitthipagon, P.; Donpunha, W.; Nakmareong, S.; Yamauchi, J. The effects of strengthening exercises for wrist flexors and extensors on muscle strength and counter–stroke performance in amateur table tennis players. J. Bodyw. Mov. Ther. 2017, 21, 1033–1036. [Google Scholar] [CrossRef]
- Boyali, A.; Hashimoto, N. Spectral collaborative representation based classification for hand gestures recognition on electro–myography signals. Biomed. Signal Process Control 2016, 24, 11–18. [Google Scholar] [CrossRef] [Green Version]
- The Myo Team. Myo Support. Available online: https://support.getmyo.com/hc/en-us/ (accessed on 2 July 2018).
- Bangaru, S.S.; Wang, C.; Aghazadeh, F. Data Quality and Reliability Assessment of Wearable EMG and IMU Sensor for Construction Activity Recognition. Sensors 2020, 20, 5264. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Leal, V.; Orozco-Duque, A.; Ugarte, J.P.; Portela, M.A.; Franco, J.C.; Perez, V.Z. Assessment protocol of wrist flexion and extension to support processes in occupational health using Myo Armband. In Proceedings of the VII Latin American Congress on Biomedical Engineering, Paraná, Argentina, 29–31 October 2014; Springer: Singapore, 2017; pp. 585–588. [Google Scholar]
- Le Mansec, Y.; Dorel, S.; Hug, F.; Jubeau, M. Lower limb muscle activity during table tennis strokes. Sports Biomech. 2017, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Fu, L.; Gu, Y.; Mei, Q.; Fu, F.; Fernandez, J. Comparative Study of Kinematics and Muscle Activity Between Elite and Amateur Table Tennis Players During Topspin Loop Against Backspin Movements. J. Hum. Kinet. 2018, 64, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, C.; Shao, S.; Awrejcewicz, J.; Baker, J.S.; Gu, Y. Lower Limb Maneuver Investigation of Chasse Steps Among Male Elite Table Tennis Players. Medicina 2019, 55, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegazy, H.; Abdelsalam, M.; Hussien, M.; Elmosalamy, S.; Hassan, Y.M.; Nabil, A.M.; Atia, A. Online detection and classification of in–corrected played strokes in table tennis using ir depth camera. Procedia Comput. Sci. 2020, 170, 555–562. [Google Scholar] [CrossRef]
- Tsai, C.; Pan, K.; Huang, K.; Chang, T.; Hsueh, Y.; Wang, L.; Chang, S. The surface emg activity of the upper limb muscles in table tennis forehand drives. In Proceedings of the 28 International Conference on Biomechanics in Sports, Marquette, MI, USA, 19–23 July 2010. [Google Scholar]
Classification | Label Name |
---|---|
Expert backswing phase | E-BP |
Expert forward swing phase | E-FP |
Novice backswing phase | N-BP |
Novice forward swing phase | N-FP |
E-BP | E-FP | N-BP | N-FP | |
---|---|---|---|---|
Acc X | −1.51(0.38) | 10.82(1.32) | −0.52(0.38) | 5.56(3.02) |
Acc Y | 1.10(0.66) | −9.08(1.39) | 0.93(0.57) | −5.93(2.45) |
Acc Z | 0.56(0.36) | −3.16(0.84) | 0.37(0.29) | −2.46(1.18) |
Gyro X | 35.68(32.21) | −380.75(82.85) | 56.38(45.48) | −319.67(200.27) |
Gyro Y | 136.97(49.42) | −465.58(136.51) | 196.03(119.91) | −351.73(113.47) |
Gyro Z | −352.28(137.00) | 1192.91(69.11) | −489.94(226.25) | 986.93(149.67) |
EMG 1 | 10.73(4.34) | 19.18(4.67) | 4.87(1.97) | 9.68(3.04) |
EMG 2 | 15.81(3.89) | 21.62(4.17) | 9.80(5.32) | 16.91(6.02) |
EMG 3 | 10.99(3.35) | 20.44(4.67) | 9.82(4.16) | 17.72(6.25) |
EMG 4 | 8.77(2.29) | 24.24(3.72) | 10.47(5.10) | 21.08(7.04) |
EMG 5 | 8.87(3.40) | 24.38(3.03) | 9.18(5.17) | 19.81(5.77) |
EMG 6 | 6.35(3.23) | 22.87(5.00) | 6.89(5.74) | 15.41(6.29) |
EMG 7 | 6.61(1.81) | 17.40(4.04) | 6.65(5.88) | 14.08(6.68) |
EMG 8 | 10.23(3.61) | 20.49(4.39) | 5.97(5.51) | 12.39(7.94) |
Forearm Explosive Force (PC1) | Wrist Muscle Control (PC2) | |
---|---|---|
Gyro Y | −0.897 | |
Gyro Z | 0.894 | |
Acc Y | −0.880 | |
Gyro X | −0.857 | |
Acc Z | −0.847 | |
Acc X | 0.844 | |
EMG 2 | 0.886 | |
EMG 7 | 0.796 | |
EMG 8 | 0.792 | |
EMG 1 | 0.787 | |
EMG 3 | 0.722 | |
EMG 4 | 0.613 | 0.684 |
EMG 5 | 0.644 | 0.653 |
EMG 6 | 0.604 | 0.647 |
Initial Eigenvalues | 10.411 | 1.279 |
% of Variance | 74.367 | 9.136 |
Cumulative % | 74.367 | 83.503 |
Model Testing Data | New Testing Data | ||||||||
---|---|---|---|---|---|---|---|---|---|
Predict | E-BP | E-FP | N-BP | N-FP | E-BP | E-FP | N-BP | N-FP | |
Label | E-BP | 9 | 0 | 0 | 0 | 6 | 0 | 2 | 0 |
E-FP | 0 | 7 | 0 | 1 | 0 | 8 | 0 | 0 | |
N-BP | 0 | 0 | 9 | 0 | 1 | 0 | 15 | 0 | |
N-FP | 0 | 1 | 0 | 5 | 0 | 4 | 0 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.-L.; Liang, J.-M.; Chen, C.-F.; Tsai, K.-L.; Chen, N.-S.; Lin, K.-C.; Huang, I.-J. Creating a Scoring System with an Armband Wearable Device for Table Tennis Forehand Loop Training: Combined Use of the Principal Component Analysis and Artificial Neural Network. Sensors 2021, 21, 3870. https://doi.org/10.3390/s21113870
Wu W-L, Liang J-M, Chen C-F, Tsai K-L, Chen N-S, Lin K-C, Huang I-J. Creating a Scoring System with an Armband Wearable Device for Table Tennis Forehand Loop Training: Combined Use of the Principal Component Analysis and Artificial Neural Network. Sensors. 2021; 21(11):3870. https://doi.org/10.3390/s21113870
Chicago/Turabian StyleWu, Wen-Lan, Jing-Min Liang, Chien-Fei Chen, Kuei-Lan Tsai, Nian-Shing Chen, Kuo-Chin Lin, and Ing-Jer Huang. 2021. "Creating a Scoring System with an Armband Wearable Device for Table Tennis Forehand Loop Training: Combined Use of the Principal Component Analysis and Artificial Neural Network" Sensors 21, no. 11: 3870. https://doi.org/10.3390/s21113870
APA StyleWu, W.-L., Liang, J.-M., Chen, C.-F., Tsai, K.-L., Chen, N.-S., Lin, K.-C., & Huang, I.-J. (2021). Creating a Scoring System with an Armband Wearable Device for Table Tennis Forehand Loop Training: Combined Use of the Principal Component Analysis and Artificial Neural Network. Sensors, 21(11), 3870. https://doi.org/10.3390/s21113870