The Sensor Hub for Detecting the Developmental Characteristics in Reading in Children on a White vs. Colored Background/Colored Overlays
<p>Experiment setup: (<b>1</b>) Eye-tracking system; (<b>2</b>) Portable multimodal EEG/ECG/EDA system; (<b>3</b>) Photosensitive sensor for synchronization of multimodal EEG/ECG/EDA system and eye-tracking system.</p> "> Figure 2
<p>SDNN, CVRR and STD HR by grade and color (normalized on white color). (<b>A</b>) Normalized SDNN values (ms), (<b>B</b>) Normalized CVRR values (n.u.) and (<b>C</b>) Normalized STD HR (beats / min). Normalized values of each parameter are calculated by subtracting the parameter value for white background from the values for each of the background / overlay colors. Bar plots show the normalized data for all background and overlay colors (overlay colors labeled with "o" on x-axis), where second and third grader’s values are presented with blue and red colored bars, respectively. Error bars denote standard errors of the mean.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experiment Setup
2.3. Experiment Design
2.3.1. Stimuli
2.3.2. Color Calculation
2.3.3. Data Processing
2.4. Statistical Methodology
3. Results
3.1. White (Default) Background—Reading Results
3.2. Background and Overlay Colors—Reading Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schroeder, S.; Hyönä, J.; Liversedge, S.P. Developmental eye-tracking research in reading: Introduction to the special issue. J. Cogn. Psychol. 2015, 27, 500–510. [Google Scholar] [CrossRef]
- Korneev, A.A.; Matveeva, E.Y.; Akhutina, T.V. What We Can Learn about Reading Development from the Analysis of Eye Movements. Hum. Physiol. 2018, 44, 183–190. [Google Scholar] [CrossRef]
- Lobier, M.; Dubois, M.; Valdois, S. The Role of Visual Processing Speed in Reading Speed Development. PLoS ONE 2013, 8, e58097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerkkanen, M.K.; Rasku-Puttonen, H.; Aunola, K.; Nurmi, J.E. Reading performance and its developmental trajectories during the first and the second grade. Learn. Instr. 2004, 14, 111–130. [Google Scholar] [CrossRef]
- Miller, B.; Shriver, E.K.; O’donnell, C. Opening a Window into Reading Development: Eye Movements’ Role Within a Broader Literacy Research Framework. Sch. Psych. Rev. 2013, 42, 123–139. [Google Scholar] [CrossRef]
- Korneev, A.A.; Akhutina, T.V.; Matveeva, E.Y. Reading in third graders with different state of the skill: An eye-tracking study. Mosc. Univ. Psychol. Bull. 2019, 64–87. [Google Scholar] [CrossRef]
- Vorstius, C.; Radach, R.; Lonigan, C.J. Eye movements in developing readers: A comparison of silent and oral sentence reading. Vis. Cogn. 2014, 22, 458–485. [Google Scholar] [CrossRef]
- Hulme, C.; Snowling, M.J. Learning to Read: What We Know and What We Need to Understand Better. Child Dev. Perspect. 2013, 7, 1–5. [Google Scholar] [CrossRef]
- McArthur, G.; Castles, A. Helping children with reading difficulties: Some things we have learned so far. npj Sci. Learn. 2017, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Van Bommel, W.J.M.; van den Beld, G.J. Lighting for work: A review of visual and biological effects. Light. Res. Technol. 2004, 36, 255–269. [Google Scholar] [CrossRef]
- De Jong, P.F.; van der Leij, A. Effects of Phonological Abilities and Linguistic Comprehension on the Development of Reading. Sci. Stud. Read. 2002, 6, 51–77. [Google Scholar] [CrossRef]
- Uccula, A.; Enna, M.; Mulatti, C. Colors, colored overlays, and reading skills. Front. Psychol. 2014, 5, 833. [Google Scholar] [CrossRef] [PubMed]
- Jansky, J.J. A case of severe dyslexia with aphasic-like symptoms. Bull. Orton Soc. 1958, 8, 8–11. [Google Scholar] [CrossRef]
- Wilkins, A.J.; Evans, B.J.W. Visual stress, its treatment with spectral filters, and its relationship to visually induced motion sickness. Appl. Ergon. 2010, 41, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Pinna, B.; Deiana, K. On the Role of Color in Reading and Comprehension Tasks in Dyslexic Children and Adults. i-Perception 2018, 9, 204166951877909. [Google Scholar] [CrossRef]
- Denton, T.F.; Meindl, J.N. The Effect of Colored Overlays on Reading Fluency in Individuals with Dyslexia. Behav. Anal. Pract. 2016, 9, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Veszeli, J.; Shepherd, A.J. A comparison of the effects of the colour and size of coloured overlays on young children’s reading. Vis. Res. 2019, 156, 73–83. [Google Scholar] [CrossRef] [Green Version]
- AL-Ayash, A.; Kane, R.T.; Smith, D.; Green-Armytage, P. The influence of color on student emotion, heart rate, and performance in learning environments. Color Res. Appl. 2016, 41, 196–205. [Google Scholar] [CrossRef]
- Mehta, R.; Zhu, R. Blue or red? Exploring the effect of color on cognitive task performances. Science 2009, 323, 1226–1229. [Google Scholar]
- Moharreri, S.; Dabanloo, N.J.; Parvaneh, S.; Nasrabadi, A.M. How to interpret psychology from heart rate variability? In Proceedings of the 1st Middle East Conference on Biomedical Engineering, Sharjah, UAE, 22–25 February 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 296–299. [Google Scholar]
- Rayner, K.; Liversedge, S.P.; White, S.J. Eye movements when reading disappearing text: The importance of the word to the right of fixation. Vis. Res. 2006, 46, 310–323. [Google Scholar] [CrossRef] [Green Version]
- Rayner, K.; Yang, J.; Schuett, S.; Slattery, T.J. Eye movements of older and younger readers when reading unspaced text. Exp. Psychol. 2013, 60, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Rayner, K.; Castelhano, M.S.; Yang, J. Eye Movements and the Perceptual Span in Older and Younger Readers. Psychol. Aging 2009, 24, 755. [Google Scholar] [CrossRef] [PubMed]
- Wass, S. The use of eye tracking with infants and children. In Practical Research with Children; Routledge: Abingdon-on-Thames, UK, 2016; pp. 24–45. [Google Scholar]
- Giagloglou, E.; Radenkovic, M.; Brankovic, S.; Antoniou, P.; Zivanovic-Macuzic, I. Pushing, pulling and manoeuvring an industrial cart: A psychophysiological study. Int. J. Occup. Saf. Ergon. 2019, 25, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Sachin, S.; Netaji, G.N. Pattern analysis of different ECG signal using Pan-Tompkin’s algorithm. Int. J. Comput. Sci. Eng. 2010, 2, 2502–2505. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Marshall, P.J.; Bar-Haim, Y.; Fox, N.A. Development of the EEG from 5 months to 4 years of age. Clin. Neurophysiol. 2002, 113, 1199–1208. [Google Scholar] [CrossRef]
- Miskovic, V.; Ma, X.; Chou, C.-A.; Fan, M.; Owens, M.; Sayama, H.; Gibb, B.E. Developmental changes in spontaneous electrocortical activity and network organization from early to late childhood. Neuroimage 2015, 118, 237–247. [Google Scholar] [CrossRef] [Green Version]
- Spironelli, C.; Angrilli, A. Developmental aspects of language lateralization in delta, theta, alpha and beta EEG bands. Biol. Psychol. 2010, 85, 258–267. [Google Scholar] [CrossRef]
- Massin, M.; von Bernuth, G. Normal ranges of heart rate variability during infancy and childhood. Pediatric Cardiol. 1997, 18, 297–302. [Google Scholar] [CrossRef]
- Goto, M.; Nagashima, M.; Baba, R.; Nagano, Y.; Yokota, M.; Nishibata, K.; Tsuji, A. Analysis of heart rate variability demonstrates effects of development on vagal modulation of heart rate in healthy children. J. Pediatrics 1997, 130, 725–729. [Google Scholar] [CrossRef]
- Finley, J.P.; Nugent, S.T. Heart rate variability in infants, children and young adults. J. Auton. Nerv. Syst. 1995, 51, 103–118. [Google Scholar] [CrossRef]
- Seppälä, S.; Laitinen, T.; Tarvainen, M.P.; Tompuri, T.; Veijalainen, A.; Savonen, K.; Lakka, T. Normal values for heart rate variability parameters in children 6-8 years of age: The PANIC Study. Clin. Physiol. Funct. Imaging 2014, 34, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.G.; Koh, S.B.; Cha, B.S.; Park, J.K.; Woo, J.M.; Chang, S.J. Association between job stress on heart rate variability and metabolic syndrome in shipyard male workers. Yonsei Med J. 2004, 45, 838–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freiders, S.; Lee, S.; Statz, D.; Kim Group, T. The Influence of Color on Physiological Response. J. Adv. Stud. Sci. 2012. [Google Scholar]
- Morrison, R. Effect of Color Overlays on Reading Efficiency. Ph.D. Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2011. [Google Scholar]
- Griffiths, P.G.; Taylor, R.H.; Henderson, L.M.; Barrett, B.T. The effect of coloured overlays and lenses on reading: A systematic review of the literature. Ophthalmic Physiol. Opt. 2016, 36, 519–544. [Google Scholar] [CrossRef] [Green Version]
- Rello, L.; Bigham, J.P. Good Background Colors for Readers: A Study of People with and without Dyslexia. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility, Baltimore, MD, USA, 29 October–1 November 2017. [Google Scholar] [CrossRef]
- Hlengwa, N.; Moonsamy, P.; Ngwane, F.; Nirghin, U.; Singh, S. The effect of color overlays on the reading ability of dyslexic children. Indian J. Ophthalmol. 2017, 65, 772–773. [Google Scholar]
- Kliegl, R.; Grabner, E.; Rolfs, M.; Engbert, R. Length, frequency, and predictability effects of words on eye movements in reading. Eur. J. Cogn. Psychol. 2004, 16, 262–284. [Google Scholar] [CrossRef]
- Dambacher, M.; Kliegl, R.; Hofmann, M.; Jacobs, A.M. Frequency and predictability effects on event-related potentials during reading. Brain Res. 2006, 1084, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Rayner, K.; Castelhano, M.S.; Yang, J. Preview benefit during eye fixations in reading for older and younger readers. Psychol. Aging 2010, 25, 714–718. [Google Scholar] [CrossRef]
- Rayner, K.; Chace, K.H.; Slattery, T.J.; Ashby, J. Eye movements as reflections of comprehension processes in reading. Sci. Stud. Read. 2006, 10, 241–255. [Google Scholar] [CrossRef]
- Rayner, K. Eye movements and the perceptual span in beginning and skilled readers. J. Exp. Child Psychol. 1986, 41, 211–236. [Google Scholar] [CrossRef]
- Rayner, K.; Foorman, B.R.; Perfetti, C.A.; Pesetsky, D.; Seidenberg, M.S. How Psychological Science Informs the Teaching of Reading. Psychol. Sci. Public Interest 2001, 2, 31–74. [Google Scholar] [CrossRef] [PubMed]
- Laubrock, J.; Kliegl, R.; Engbert, R. SWIFT explorations of age differences in eye movements during reading. Neurosci. Biobehav. Rev. 2006, 30, 872–884. [Google Scholar] [CrossRef]
- Rayner, K.; Reichle, E.D.; Stroud, M.J.; Williams, C.C.; Pollatsek, A. The effect of word frequency, word predictability, and font difficulty on the eye movements of young and older readers. Psychol. Aging 2006, 21, 448–465. [Google Scholar] [CrossRef]
- Boucsein, W. Electrodermal Activity; Springer Science and Business Media, LLC: Berlin/Heidelberg, Germany, 2012; p. 618. [Google Scholar]
- Boucsein, W. Principles of Electrodermal Phenomena. In Electrodermal Activity; Springer: Boston, MA, USA, 2012; pp. 1–86. [Google Scholar]
- Carlucci, L.; Watkins, M.W.; Sergi, M.R.; Cataldi, F.; Saggino, A.; Balsamo, M. Dimensions of anxiety, age, and gender: Assessing dimensionality and measurement invariance of the State-Trait for Cognitive and Somatic Anxiety (STICSA) in an Italian sample. Front. Psychol. 2018, 9, 2345. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Description |
---|---|---|
Time domain parameters | ||
Mean RR | ms | Mean value of BBIs |
SDNN | ms | Standard deviation of normal BBIs |
Mean HR | beats/min | Mean value of heart rate |
STD HR | beats/min | Standard deviation of heart rate |
CVRR = SDNN/Mean RR | n.u. | Coefficient of variance of normal BBIs |
RMSSD | ms | Root mean square of differences of successive BBIs |
NN50 | beats | Number of successive BBIs that varied more than 50 ms |
pNN50 | % | Percentage of successive BBIs that differ more than 50 ms |
Parameters | Grade | p Value * | |
---|---|---|---|
Second (n = 12) | Third (n = 12) | ||
Reading duration | |||
RD (s) | 43.38 ± 25.32 | 49.07 ± 27.63 | 0.628 |
EEG parameters (median power band) | |||
Alpha (μV2) | 13.19 ± 5.15 | 5.63 ± 4.28 | 0.001 |
Beta (μV2) | 6.05 ± 2.81 | 3.33 ± 2.40 | 0.018 |
Delta (μV2) | 64.45 ± 20.47 | 71.85 ± 63.54 | 0.707 |
Theta (μV2) | 16.07 ± 7.14 | 8.35 ± 7.67 | 0.018 |
Whole Range (μV2) | 113.3 ± 38.5 | 97.2 ± 80.5 | 0.540 |
Eye tracking parameters | |||
Fixation Count | 38.25 ± 19.62 | 35.00 ± 9.66 | 0.620 |
Fixation Frequency (count/s) | 1.01 ± 0.36 | 0.99 ± 0.67 | 0.925 |
Fixation Duration Total (s) | 40.87 ± 25.01 | 46.22 ± 26.32 | 0.631 |
Fixation Duration Average (ms) | 1088.2 ± 542.9 | 1331.5 ± 730.9 | 0.381 |
Saccade Count | 34.92 ± 19.16 | 28.70 ± 5.23 | 0.301 |
Saccade Frequency (count/s) | 0.95 ± 0.38 | 0.86 ± 0.65 | 0.686 |
Saccade Duration Total (ms) | 741.3 ± 449.4 | 680.0 ± 276.7 | 0.711 |
Saccade Duration Average (ms) | 20.93 ± 2.76 | 23.22 ± 5.61 | 0.227 |
EDA value | |||
EDA (μS) | 9.41 ± 3.49 | 6.20 ± 4.38 | 0.060 |
HRV parameters | |||
Mean RR (ms) | 637.4 ± 59.8 | 680.5 ± 114.4 | 0.264 |
SDNN (ms) | 35.14 ± 11.95 | 66.11 ± 46.15 | 0.043 |
CVRR (n.u.) | 0.06 ± 0.02 | 0.10 ± 0.05 | 0.021 |
Mean HR (beats/min) | 94.87 ± 8.69 | 90.26 ± 13.75 | 0.337 |
STD HR (beats/min) | 5.12 ± 1.54 | 8.40 ± 3.85 | 0.016 |
RMSSD (ms) | 42.50 ± 17.42 | 84.94 ± 74.74 | 0.079 |
NN50 (beats) | 12.42 ± 9.44 | 19.67 ± 16.43 | 0.298 |
pNN50 (%) | 23.40 ± 18.34 | 36.30 ± 25.88 | 0.236 |
Parameters | Normalized Values | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Red | Blue | Yellow | Orange | Purple | Turquoise | Red O | Blue O | Yellow O | Orange O | Purple O | Turquoise O | |
Reading duration | ||||||||||||
RD (s) | ||||||||||||
EEG parameters (median power band) | ||||||||||||
Alpha (μV2) | ||||||||||||
Beta (μV2) | ||||||||||||
Delta (μV2) | ||||||||||||
Theta (μV2) | ||||||||||||
Whole Range (μV2) | ||||||||||||
Eye tracking parameters | ||||||||||||
Fixation Count | ||||||||||||
Fixation Frequency (count/s) | ||||||||||||
Fixation Duration Total (s) | ||||||||||||
Fixation Duration Average (ms) | ||||||||||||
Saccade Count | ||||||||||||
Saccade Frequency (count/s) | ||||||||||||
Saccade Duration Total (ms) | 0.9 | |||||||||||
Saccade Duration Average (ms) | ||||||||||||
EDA value | ||||||||||||
EDA (μS) | ||||||||||||
HRV parameters | ||||||||||||
Mean RR (ms) | ||||||||||||
SDNN (ms) | 0.6 | 0.5 | 0.2 | |||||||||
CVRR | 0.8 | 0.6 | 0.6 | |||||||||
Mean HR (beats/min) | ||||||||||||
STD HR (beats/min) | 0.2 | 0.4 | 0.5 | 0.2 | 0.7 | 0.5 | 0.3 | |||||
RMSSD (ms) | 0.5 | 0.3 | ||||||||||
NN50 (beats) | ||||||||||||
pNN50 (%) |
Parameters | Grade | p Value * | |
---|---|---|---|
Second (n = 12) | Third (n = 12) | ||
Reading duration | |||
RD (s) | 42.74 ± 31.81 | 50.33 ± 27.40 | 0.001 |
EEG parameters (median power band) | |||
Alpha (μV2) | 13.50 ± 5.28 | 4.67 ± 3.20 | 0.001 |
Beta (μV2) | 6.36 ± 2.90 | 3.71 ± 4.70 | 0.001 |
Delta (μV2) | 71.49 ± 37.33 | 51.23± 48.90 | 0.001 |
Theta (μV2) | 17.55± 7.88 | 6.38± 4.75 | 0.001 |
Whole Range (μV2) | 123.36 ± 54.24 | 74.45± 61.30 | 0.001 |
Eye tracking parameters | |||
Fixation Count | 35.14 ± 13.97 | 36.35± 10.31 | 0.412 |
Fixation Frequency (count/s) | 1.10 ± 0.89 | 1.01 ± 0.75 | 0.372 |
Fixation Duration Total (s) | 40.01 ± 30.71 | 47.47 ± 25.63 | 0.028 |
Fixation Duration Average (ms) | 1038.49 ± 593.15 | 1283.29 ± 584.55 | 0.001 |
Saccade Count | 31.31 ± 12.36 | 30.93 ± 8.05 | 0.753 |
Saccade Frequency (count/s) | 0.99 ± 1.00 | 0.89 ± 0.71 | 0.376 |
Saccade Duration Total (ms) | 662.9 ± 293.4 | 712.0 ± 273.6 | 0.147 |
Saccade Duration Average (ms) | 21.65 ± 6.09 | 22.69 ± 3.88 | 0.093 |
EDA value | |||
EDA (μS) | 10.13± 3.25 | 6.32 ± 3.95 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakovljević, T.; Janković, M.M.; Savić, A.M.; Soldatović, I.; Todorović, P.; Jere Jakulin, T.; Papa, G.; Ković, V. The Sensor Hub for Detecting the Developmental Characteristics in Reading in Children on a White vs. Colored Background/Colored Overlays. Sensors 2021, 21, 406. https://doi.org/10.3390/s21020406
Jakovljević T, Janković MM, Savić AM, Soldatović I, Todorović P, Jere Jakulin T, Papa G, Ković V. The Sensor Hub for Detecting the Developmental Characteristics in Reading in Children on a White vs. Colored Background/Colored Overlays. Sensors. 2021; 21(2):406. https://doi.org/10.3390/s21020406
Chicago/Turabian StyleJakovljević, Tamara, Milica M. Janković, Andrej M. Savić, Ivan Soldatović, Petar Todorović, Tadeja Jere Jakulin, Gregor Papa, and Vanja Ković. 2021. "The Sensor Hub for Detecting the Developmental Characteristics in Reading in Children on a White vs. Colored Background/Colored Overlays" Sensors 21, no. 2: 406. https://doi.org/10.3390/s21020406
APA StyleJakovljević, T., Janković, M. M., Savić, A. M., Soldatović, I., Todorović, P., Jere Jakulin, T., Papa, G., & Ković, V. (2021). The Sensor Hub for Detecting the Developmental Characteristics in Reading in Children on a White vs. Colored Background/Colored Overlays. Sensors, 21(2), 406. https://doi.org/10.3390/s21020406