Characterization of an Ultrasonic Local Positioning System for 3D Measurements
"> Figure 1
<p>(<b>a</b>) General view of the LOCATE-US 3D ultrasonic local positioning system (ULPS) developed by the GEINTRA-US/RF research group from the University of Alcala [<a href="#B11-sensors-20-02794" class="html-bibr">11</a>]; (<b>b</b>) Configuration proposed for the 3D positioning system, based on three ULPSs installed on three perpendicular planes in the experimental environment, where the point O is the origin of coordinates.</p> "> Figure 2
<p>General aspect of the reception module: <span class="html-italic">(</span><b>a</b>) a single ultrasonic receiver; (<b>b</b>) a multiple receiver prototype.</p> "> Figure 3
<p>Example of the received signal <span class="html-italic">r<sub>A</sub></span>[<span class="html-italic">n</span>] (<b>top</b>) and the five correlation functions for ULPS-1 (<b>bottom</b>).</p> "> Figure 4
<p>(<b>a</b>) General block diagram of the processing proposed for the multiple receiver prototype; (<b>b</b>) detailed block diagram for receiver RA.</p> "> Figure 5
<p>Environment and grid of positions to be considered hereinafter in the evaluation of the positioning performance by simulation.</p> "> Figure 6
<p>Positions estimated by simulation for ULPS-1 with the 3D receiver prototype (a different color for each simulated position P1–P7): (<b>a</b>) 3D representation for <span class="html-italic">z</span><sub>1</sub> = 1.35 m; (<b>b</b>) XZ projection for <span class="html-italic">z</span><sub>1</sub> = 1.35 m; (<b>c</b>) 3D representation for <span class="html-italic">z</span><sub>2</sub> = 1.93 m; (<b>d</b>) XZ projection for <span class="html-italic">z</span><sub>2</sub> = 1.93 m.</p> "> Figure 7
<p>Position dilution of precision (PDOP) representation for ULPS-1: (<b>a</b>) at <span class="html-italic">z</span><sub>1</sub> = 1.35 m; (<b>b</b>) at <span class="html-italic">z</span><sub>2</sub> = 1.93 m.</p> "> Figure 8
<p>Estimated positions for the considered points (P1–P7) after fusion, including the projections of their corresponding error ellipsoids with a certainty of 95%, at <span class="html-italic">z</span><sub>1</sub> = 1.35 m.</p> "> Figure 9
<p>Estimated positions for the considered points (P1–P7) after fusion, including the projections of their corresponding error ellipsoids with a certainty of 95%, at <span class="html-italic">z</span><sub>2</sub> = 1.93 m.</p> "> Figure 10
<p>PDOP estimation when merging the three ULPSs at: (<b>a</b>) <span class="html-italic">z</span><sub>1</sub> = 1.35 m and (<b>b</b>) <span class="html-italic">z</span><sub>2</sub> = 1.93 m.</p> "> Figure 11
<p>Experimental workspace, including the measurement points (P’1–P’7) at heights <span class="html-italic">z</span><sub>1</sub> = 1.35 m and <span class="html-italic">z</span><sub>2</sub> = 1.93 m.</p> "> Figure 12
<p>Experimental results for the test points (P’1–P’7) for both heights, <span class="html-italic">z</span><sub>1</sub> = 1.35 m on the left and <span class="html-italic">z</span><sub>1</sub> = 1.93 m on the right: (<b>a</b>,<b>b</b>) 3D representation of clouds of points; (<b>c</b>,<b>d</b>) Y-X projections; (<b>e</b>,<b>f</b>) Z-X projections; (<b>g</b>,<b>h</b>) Z-Y projections; (<b>i</b>,<b>j</b>) experimental CDFs for the results at each test point and for all of them. All the cases include the projections of their corresponding error ellipsoids with a certainty of 95%, after the average and the maximum likelihood estimation (MLE) fusion.</p> "> Figure 12 Cont.
<p>Experimental results for the test points (P’1–P’7) for both heights, <span class="html-italic">z</span><sub>1</sub> = 1.35 m on the left and <span class="html-italic">z</span><sub>1</sub> = 1.93 m on the right: (<b>a</b>,<b>b</b>) 3D representation of clouds of points; (<b>c</b>,<b>d</b>) Y-X projections; (<b>e</b>,<b>f</b>) Z-X projections; (<b>g</b>,<b>h</b>) Z-Y projections; (<b>i</b>,<b>j</b>) experimental CDFs for the results at each test point and for all of them. All the cases include the projections of their corresponding error ellipsoids with a certainty of 95%, after the average and the maximum likelihood estimation (MLE) fusion.</p> "> Figure 13
<p>Results obtained in the same test points (P’1–P’7) in the case of using only ULPS-1: (<b>a</b>–<b>e</b>) are the cloud of points and the error CDF for the test-points at <span class="html-italic">z</span><sub>1</sub> = 1.35 m, whereas (<b>f</b>) shows the error CDF at <span class="html-italic">z</span><sub>1</sub> = 1.93 m.</p> "> Figure 13 Cont.
<p>Results obtained in the same test points (P’1–P’7) in the case of using only ULPS-1: (<b>a</b>–<b>e</b>) are the cloud of points and the error CDF for the test-points at <span class="html-italic">z</span><sub>1</sub> = 1.35 m, whereas (<b>f</b>) shows the error CDF at <span class="html-italic">z</span><sub>1</sub> = 1.93 m.</p> ">
Abstract
:1. Introduction
2. Ultrasonic Local Positioning System Overview
2.1. Technical Description and 3D Configuration
2.2. Proposed Signal Processing
- Defining an initial position for the receiver (it should be chosen according to the a priori knowledge of the environment—In our case we consider the center of the positioning area). In the following steps of the algorithm, this position will be the previously obtained .
- Minimizing the following function F(x, y, z):
- Estimating, at each step k, the new position , and repeating the process until becomes small enough (according to a pre-defined threshold).
3. Positioning Performance for a Single ULPS
4. Novel Proposal Based on Three ULPSs
5. Experimental Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zekavat, R.; Buehrer, R.M. Wireless Positioning Systems: Operation, Application, and Comparison. In Handbook of Position Location: Theory, Practice and Advances; Wiley-IEEE Press: Piscataway, NJ, USA, 2012; pp. 3–23. [Google Scholar]
- Perttula, A.; Leppäkoski, H.; Kirkko-Jaakkola, M.; Davidson, P.; Collin, J.; Takala, J. Distributed Indoor Positioning System with Inertial Measurements and Map Matching. IEEE Trans. Instrum. Meas. 2014, 63, 2682–2695. [Google Scholar] [CrossRef]
- Scherhäufl, M.; Pichler, M.; Stelzer, A. UHF RFID Localization Based on Evaluation of Backscattered Tag Signals. IEEE Trans. Instrum. Meas. 2015, 64, 2889–2899. [Google Scholar] [CrossRef]
- Manley, E.D.; Nahas, H.A.; Deogun, J.S. Localization and Tracking in Sensor Systems. In Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous and Trustworthy Computing (SUTC′06), Taichung, Taiwan, 5–7 June 2006; Volume 2, pp. 237–242. [Google Scholar]
- De Angelis, A.; Moshitta, A.; Carbone, P.; Calderini, M.; Neri, S.; Borgna, R.; Peppucci, M. Design and Characterization of a Portable Ultrasonic Indoor 3-D Positioning System. IEEE Trans. Instrum. Meas. 2015, 64, 2616–2625. [Google Scholar] [CrossRef]
- Zwirello, L.; Schipper, T.; Jalilvand, M.; Zwick, T. Realization Limits of Impulse-Based Localization System for Large-Scale Indoor Applications. IEEE Trans. Instrum. Meas. 2015, 64, 39–51. [Google Scholar] [CrossRef]
- Huang, S.; Wu, Z.; Misra, A.; Practical, A. Robust and Fast Method for Location Localization in Range-Based Systems. Sensors 2017, 17, 2869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, A.R.; Seco, F. Comparing Ubisense, BeSpoon, and DecaWave UWB Location Systems: Indoor Performance Analysis. IEEE Trans. Instrum. Meas. 2017, 66, 2106–2117. [Google Scholar] [CrossRef]
- Yucel, H.; Ozkir, T.; Edizkan, R.; Yazici, A. Development of indoor positioning system with ultrasonic and infrared signals. In Proceedings of the International Symposium on Innovations in Intelligent Systems and Applications, Trabzon, Turkey, 2–4 July 2012; pp. 1–4. [Google Scholar]
- Zhao, Y.; Smith, J.R. A battery-free RFID-based indoor acoustic localization platform. In Proceedings of the IEEE International Conference on RFID (RFID), Johor Bahru, Malaysia, 4–5 September 2013; pp. 110–117. [Google Scholar]
- Hernández, A.; García, E.; Gualda, D.; Villadangos, J.M.; Nombela, F.; Ureña, J. FPGA-based Architecture for Managing Ultrasonic Beacons in a Local Positioning System. IEEE Trans. Instrum. Meas. 2017, 66, 1954–1964. [Google Scholar] [CrossRef]
- Sertatıl, C.; Altınkaya, M.A.; Raoof, K. A novel acoustic indoor localization system employing CDMA. Digit. Signal Process. 2012, 22, 506–517. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; An, Z.; Yang, L. Rebooting Ultrasonic Positioning Systems for Ultrasound-incapable Smart Devices. In Proceedings of the 25th Annual International Conference on Mobile Computing and Networking, Los Cabos, Mexico, 21–25 October 2019. [Google Scholar]
- Saad, M.M.; Bleakley, C.J.; Ballal, T.; Dobson, S. High-Accuracy Reference-Free Ultrasonic Location Estimation. IEEE Trans. Instrum. Meas. 2012, 61, 1561–1570. [Google Scholar] [CrossRef]
- Kapoor, R.; Ramasamy, S.; Gardi, A.; Bieber, C.; Silverberg, L.; Sabatini, R. A Novel 3D Multilateration Sensor Using Distributed Ultrasonic Beacons for Indoor Navigation. Sensors 2016, 16, 1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prieto, J.C.; Jiménez, A.R.; Guevara, J.; Ealo, J.L.; Seco, F.; Roa, J.O.; Ramos, F. Performance Evaluation of 3D-LOCUS Advanced Acoustic LPS. IEEE Trans. Instrum. Meas. 2009, 58, 2385–2395. [Google Scholar] [CrossRef]
- SLopes, I.; Vieira, J.M.N.; Albuquerque, D. High Accuracy 3D Indoor Positioning Using Broadband Ultrasonic Signals. In Proceedings of the 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, Liverpool, UK, 25–27 June 2012; pp. 2008–2014. [Google Scholar]
- Suzuki, A.; Iyota, T.; Choi, Y.; Kubota, Y.; Watanabe, K.; Yamane, A. Measurement accuracy on indoor positioning system using spread spectrum ultrasonic waves. In Proceedings of the 2009 4th International Conference on Autonomous Robots and Agents, Wellington, New Zealand, 10–12 February 2009; pp. 294–297. [Google Scholar]
- Schweinzer, H.; Syafrudin, M. LOSNUS: An Ultrasonic System Enabling High Accuracy and Secure TDoA Locating of Numerous Devices. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010. [Google Scholar]
- Holm, S. Ultrasound positioning based on time-of-flight and signal strength. In Proceedings of the 2012 International Conference on Indoor Positioning and Indoor Navigation, Sydney, Australia, 13–15 November 2012. [Google Scholar]
- Sato, T.; Nakamura, S.; Terabayashi, K.; Sugimoto, M.; Hashizume, H. Design and implementation of a robust and real-time ultrasonic motion-capture system. In Proceedings of the 2011 International Conference on Indoor Positioning and Indoor Navigation, Guimaraes, Portugal, 21–23 September 2011; pp. 1–6. [Google Scholar]
- Nakamura, S.; Sato, T.; Sugimoto, M.; Hashizume, H. An accurate technique for simultaneous measurement of 3D position and velocity of a moving object using a single ultrasonic receiver unit. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010; pp. 1–7. [Google Scholar]
- Khyam, M.O.; Alam, M.J.; Lambert, A.J.; Benson, C.R.; Pickering, M.R. High precision ultrasonic positioning using phase correlation. In Proceedings of the 2012 6th International Conference on Signal Processing and Communication Systems, Gold Coast, Australia, 12–14 December 2012; pp. 1–6. [Google Scholar]
- Ureña, J.; Villadangos, J.M.; Gualda, D.; Pérez, M.C.; Hernández, A.; García, J.J.; Jiménez, A.; García, J.C.; Arango, J.F.; Díaz, E. Technical Description of Locate-US: An Ultrasonic Local Positioning System based on Encoded Beacons. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcalá de Henares, Madrid, Spain, 4–7 October 2016; pp. 1–4. [Google Scholar]
- Mannay, K.; Ureña, J.; Hernández, Á.; Machhout, M. Performance of Location and Positioning Systems: A 3D-Ultrasonic System Case. Adv. Sci. Technol. Eng. Syst. J. 2018, 3, 106–118. [Google Scholar] [CrossRef]
- Pro-Wave Electronics Corporation. Air Ultrasonic Ceramis Transducers 328ST/R160; Product Specification; Pro-Wave Electronics Corporation: Taipei, Taiwan, 2014. [Google Scholar]
- Gualda, D.; Ureña, J.; García, J.C.; Lindo, A. Locally-referenced ultrasonic—LPS for localization and navigation. Sensors 2014, 14, 21750–21769. [Google Scholar] [CrossRef] [PubMed]
- Villladangos, J.M.; Ureña, J.; García, J.J.; Mazo, M.; Hernández, Á.; Jiménez, A.; Ruíz, D.; Marziani, C.D. Measuring Time-of-Flight in an Ultrasonic LPS System Using Generalized Cross-Correlation. Sensors 2011, 11, 10326–10342. [Google Scholar] [CrossRef] [PubMed]
- Kasami, T. Weight distribution formula for some class of cyclic codes. In Technical Report R-285; Coordinated Science Lab, University of Illinois: Urbana, IL, USA, 1968. [Google Scholar]
- Ureña, J.; Hernández, A.; García, J.J.; Villadangos, J.M.; Pérez, M.C.; Gualda, D.; Álvarez, F.; Aguilera, T. Acoustic Local Positioning With Encoded Emission Beacons. Proc. IEEE 2018, 106, 1042–1062. [Google Scholar] [CrossRef]
- Knowles Electronics. SPU0414HR5H-SB Amplified SiSonicTM Microphone; Product Datasheet; Knowles Electronics: Norwich, UK, 2012. [Google Scholar]
- Mannay, K.; Urena, J.; Hernandez, A.; Gualda, D.; Villadangos, J.M. Testing an Ultrasonic Local Positioning System for 3D Spaces. In Proceedings of the 2018 International Conference on Indoor Positioning (IPIN), Nantes, France, 24–27 September 2018; pp. 1–4. [Google Scholar]
- Ruiz, D.; Ureña, J.; García, J.C.; Villadangos, J.M.; Pérez, M.C.; García, E. Efficient Trilateration Algorithm using Differences of Time of Arrival. Sens. Actuators A Phys. 2013, 193, 220–232. [Google Scholar] [CrossRef]
- Hernández, Á.; Ureña, J.; Villadangos, J.M.; Mannay, K. SoC Architecture for an Ultrasonic Receiver applied to Local Positioning Systems. In Proceedings of the 2018 Conference on Design of Circuits and Integrated Systems (DCIS), Lyon, France, 14–16 November 2018; pp. 1–5. [Google Scholar]
- Langley, R.B. Dilution of precision. GPS World 1999, 10, 52–59. [Google Scholar]
- Dellaert, F. Sensor Fusion as Weighted Averaging; Technical Report; Center for Robotics and Intelligent Machines, Georgia Institute of Technology: Atlanta, GA, USA, 2013. [Google Scholar]
- Rishabh, I.; Kimber, D.; Adock, J. Indoor localization using controlled ambient sounds. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sydney, Australia, 13–15 November 2012; pp. 1–10. [Google Scholar]
- Aguilera, T.; Seco, F.; Álvarez, F.J.; Jiménez, A. Broadband acoustic local positioning system for mobile devices with multiple access interference cancellation. Measurement 2018, 116, 483–494. [Google Scholar] [CrossRef]
ULPS | Coordinates for B1 (m) |
---|---|
ULPS1 | (0.84, 3.267, 3.351) |
ULPS2 | (2.06, −0.458, 1.980) |
ULPS3 | (3.92, 2.7, 2.7) |
Mean Error (m) | Standard Deviation (m) | |||||
---|---|---|---|---|---|---|
Points | x | y | z | x | y | z |
P1 | 1.091 | 1.819 | 1.187 | 0.908 | 1.553 | 0.970 |
P2 | 0.083 | 0.787 | 0.533 | 0.066 | 0.964 | 0.596 |
P3 | 1.416 | 1.798 | 1.242 | 1.484 | 1.949 | 1.314 |
P4 | 0.053 | 0.158 | 0.380 | 0.056 | 0.190 | 0.487 |
P5 | 0.745 | 0.628 | 0.891 | 0.532 | 0.451 | 0.667 |
P6 | 0.086 | 0.450 | 0.599 | 0.088 | 0.458 | 0.560 |
P7 | 4.539 | 4.946 | 1.287 | 2.040 | 1.308 | 1.132 |
Mean Error (m) | Standard Deviation (m) | |||||
---|---|---|---|---|---|---|
Points | x | y | z | x | y | z |
P1 | 0.713 | 1.207 | 0.753 | 0.611 | 1.004 | 0.607 |
P2 | 0.118 | 1.170 | 0.575 | 0.119 | 1.166 | 0.562 |
P3 | 1.219 | 1.579 | 0.996 | 0.690 | 0.877 | 0.589 |
P4 | 0.040 | 0.132 | 0.259 | 0.033 | 0.121 | 0.231 |
P5 | 0.648 | 0.544 | 0.563 | 0.796 | 0.645 | 0.670 |
P6 | 0.061 | 0.410 | 0.412 | 0.054 | 0.454 | 0.436 |
P7 | 4.607 | 4.988 | 0.535 | 1.264 | 0.840 | 0.563 |
Mean Error (m) | Standard Deviation (m) | |||||
---|---|---|---|---|---|---|
Points | x | y | z | x | y | z |
P1 | 0.503 | 0.046 | 0.220 | 0.780 | 0.520 | 0.281 |
P2 | 0.035 | 0.140 | 0.107 | 0.152 | 0.419 | 0.331 |
P3 | 0.025 | 0.023 | 0.022 | 0.227 | 0.166 | 0.100 |
P4 | 0.005 | 0.006 | 0.051 | 0.093 | 0.107 | 0.105 |
P5 | 0.066 | 0.002 | 0.080 | 0.761 | 0.664 | 0.246 |
P6 | 0.014 | 0.012 | 0.035 | 0.086 | 0.460 | 0.183 |
P7 | 0.031 | 0.282 | 0.088 | 0.400 | 0.94 | 0.260 |
Mean Error (m) | Standard Deviation (m) | |||||
---|---|---|---|---|---|---|
Points | x | y | z | x | Y | z |
P1 | 0.482 | 0.001 | 0.016 | 0.716 | 0.432 | 0.050 |
P2 | 0.056 | 0.031 | 0.008 | 0.121 | 0.159 | 0.017 |
P3 | 0.013 | 0.024 | 0.001 | 0.158 | 0.058 | 0.021 |
P4 | 0.001 | 0.034 | 0.010 | 0.034 | 0.105 | 0.041 |
P5 | 0.423 | 0.204 | 0.002 | 1.324 | 1.047 | 0.077 |
P6 | 0.012 | 0.029 | 0.017 | 0.082 | 0.288 | 0.049 |
P7 | 0.082 | 0.288 | 0.049 | 0.398 | 0.583 | 0.093 |
Positions | Before Fusion (m) | After Fusion (m) | ||
---|---|---|---|---|
ULPS-1 | ULPS-2 | ULPS-3 | 3 ULPSs | |
P1 | 2.499 | 1.875 | 3.288 | 1.071 |
P2 | 2.357 | 0.941 | 2.338 | 0.540 |
P3 | 3.497 | 0.71 | 1.191 | 0.504 |
P4 | 0.438 | 0.75 | 1.639 | 0.174 |
P5 | 1.543 | 4.43 | 2.035 | 1.256 |
P6 | 0.716 | 1.431 | 1.639 | 0.432 |
P7 | 7.047 | 4.684 | 5.26 | 1.163 |
Positions | Before Fusion (m) | After Fusion (m) | ||
---|---|---|---|---|
ULPS-1 | ULPS-2 | ULPS-3 | 3 ULPSs | |
P1 | 2.314 | 1.089 | 4.547 | 0.99 |
P2 | 1.828 | 0.501 | 2.448 | 0.235 |
P3 | 2.531 | 0.216 | 1.4 | 0.205 |
P4 | 0.455 | 1.123 | 0.967 | 0.119 |
P5 | 1.688 | 3.189 | 2.96 | 1.395 |
P6 | 0.465 | 1.693 | 2.769 | 0.455 |
P7 | 5.134 | 5.286 | 5.181 | 0.804 |
Positions | Mean Error (m) | Std Deviation (m) | ||||
---|---|---|---|---|---|---|
X(m) | Y(m) | Z(m) | X(m) | Y(m) | Z(m) | |
P’1 | 0.047 | 0.046 | 0.055 | 0.072 | 0.070 | 0.125 |
P’2 | 0.014 | 0.087 | 0.059 | 0.017 | 0.090 | 0.047 |
P’3 | 0.042 | 0.458 | 0.052 | 0.027 | 0.248 | 0.066 |
P’4 | 0.194 | 0.346 | 0.020 | 0.143 | 0.329 | 0.066 |
P’5 | 0.025 | 0.062 | 0.226 | 0.077 | 0.317 | 0.179 |
P’6 | 0.064 | 0.631 | 0.005 | 0.051 | 0.738 | 0.068 |
P’7 | 0.401 | 0.756 | 0.138 | 0.233 | 0.901 | 0.140 |
Positions | Mean Error (m) | Std Deviation (m) | ||||
---|---|---|---|---|---|---|
X(m) | Y(m) | Z(m) | X(m) | Y(m) | Z(m) | |
P’1 | 0.0258 | 0.0144 | 0.0613 | 0.0974 | 0.0571 | 0.1381 |
P’2 | 0.0087 | 0.0141 | 0.0154 | 0.0586 | 0.0787 | 0.1025 |
P’3 | 0.0390 | 0.0085 | 0.1110 | 0.0587 | 0.0590 | 0.1358 |
P’4 | 0.1889 | 0.0289 | 0.0382 | 0.2341 | 0.0372 | 0.1226 |
P’5 | 0.0140 | 0.0194 | 0.0815 | 0.0404 | 0.0673 | 0.1582 |
P’6 | 0.0274 | 0.0389 | 0.1133 | 0.0527 | 0.1240 | 0.1499 |
P’7 | 0.0148 | 0.0918 | 0.0953 | 0.1899 | 0.1180 | 0.1234 |
Positions | Mean Error (m) | Std Deviation (m) | ||||
---|---|---|---|---|---|---|
X(m) | Y(m) | Z(m) | X(m) | Y(m) | Z(m) | |
P’1 | 0.643 | 0.112 | 0.250 | 0.347 | 0.072 | 0.101 |
P’2 | 0.762 | 0.112 | 0.250 | 0.347 | 0.072 | 0.101 |
P’3 | 0.022 | 0.167 | 0.019 | 0.019 | 0.306 | 0.031 |
P’4 | 0.167 | 0.296 | 0.117 | 0.255 | 0.474 | 0.047 |
P’5 | 0.161 | 0.601 | 0.032 | 0.088 | 0.240 | 0.023 |
P’6 | 0.048 | 0.323 | 0.045 | 0.034 | 0.403 | 0.021 |
P’7 | 0.383 | 1.129 | 0.052 | 0.296 | 0.942 | 0.012 |
Positions | Mean Error (m) | Std Deviation (m) | ||||
---|---|---|---|---|---|---|
X(m) | Y(m) | Z(m) | X(m) | Y(m) | Z(m) | |
P’1 | 0.0040 | 0.0153 | 0.0014 | 0.0620 | 0.0648 | 0.0254 |
P’2 | 0.0340 | 0.0405 | 0.0009 | 0.0931 | 0.0566 | 0.0436 |
P’3 | 0.0715 | 0.0176 | 0.0023 | 0.1201 | 0.0595 | 0.0221 |
P’4 | 0.0710 | 0.0095 | 0.0085 | 0.1368 | 0.0220 | 0.0329 |
P’5 | 0.0047 | 0.0075 | 0.0163 | 0.0229 | 0.0375 | 0.0289 |
P’6 | 0.0122 | 0.0382 | 0.0010 | 0.0482 | 0.1134 | 0.0338 |
P’7 | 0.0081 | 0.0263 | 0.0156 | 0.0869 | 0.1439 | 0.0306 |
Points | Before Fusion (m) | After Fusion (m) | ||
---|---|---|---|---|
ULPS-1 | ULPS-2 | ULPS-3 | 3 ULPSs | |
P’1 | 0.608 | 2.061 | 1.383 | 0.310 |
P’2 | 0.551 | 1.165 | 1.246 | 0.208 |
P’3 | 0.892 | 0.872 | 1.010 | 0.208 |
P’4 | 2.313 | 0.998 | 0.823 | 0.206 |
P’5 | 0.472 | 0.788 | 2.578 | 0.265 |
P’6 | 1.482 | 1.165 | 1.010 | 0.310 |
P’7 | 2.130 | 1.863 | 0.679 | 0.381 |
Points | Before Fusion (m) | After Fusion (m) | ||
---|---|---|---|---|
ULPS-1 | ULPS-2 | ULPS-3 | 3 ULPSs | |
P’1 | 0.297 | 3.318 | 4.367 | 0.189 |
P’2 | 0.556 | 1.012 | 1.293 | 0.162 |
P’3 | 0.53 | 0.762 | 0.494 | 0.139 |
P’4 | 1.134 | 1.057 | 0.187 | 0.168 |
P’5 | 0.204 | 2.072 | 1.091 | 0.082 |
P’6 | 1.686 | 1.65 | 0.527 | 0.186 |
P’7 | 2.049 | 1.19 | 0.542 | 0.281 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mannay, K.; Ureña, J.; Hernández, Á.; Machhout, M.; Aguili, T. Characterization of an Ultrasonic Local Positioning System for 3D Measurements. Sensors 2020, 20, 2794. https://doi.org/10.3390/s20102794
Mannay K, Ureña J, Hernández Á, Machhout M, Aguili T. Characterization of an Ultrasonic Local Positioning System for 3D Measurements. Sensors. 2020; 20(10):2794. https://doi.org/10.3390/s20102794
Chicago/Turabian StyleMannay, Khaoula, Jesús Ureña, Álvaro Hernández, Mohsen Machhout, and Taoufik Aguili. 2020. "Characterization of an Ultrasonic Local Positioning System for 3D Measurements" Sensors 20, no. 10: 2794. https://doi.org/10.3390/s20102794
APA StyleMannay, K., Ureña, J., Hernández, Á., Machhout, M., & Aguili, T. (2020). Characterization of an Ultrasonic Local Positioning System for 3D Measurements. Sensors, 20(10), 2794. https://doi.org/10.3390/s20102794