Monitoring Soil Copper in Urban Land Using Visibale and Near-Infrared Spectroscopy with Spatially Nearby Samples
"> Figure 1
<p>Location of the sampling sites.</p> "> Figure 2
<p>Equipment setup for spectral measurements.</p> "> Figure 3
<p>A validation sample with 20 and 50 spatially nearby samples used for building the Cu estimation model. The green circles denote samples that were not selected as nearby samples.</p> "> Figure 4
<p>Flowchart of using spatially nearby samples.</p> "> Figure 5
<p>Boxplot and histogram of Cu content for calibration samples (<b>a</b>) and validation samples (<b>b</b>). Repoint (·) denotes the mean value. The blue line (|) denotes the median value. Hollow circle (○) denotes the outliers. The black box denotes the interquartile range.</p> "> Figure 6
<p>Land use and sample distribution in Shenzhen city.</p> "> Figure 7
<p>Soil Cu content between predicted and measured values using spectroscopy models without considering spatially nearby samples. <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>R</mi> </mrow> <mrow> <mi>p</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </mrow> </semantics></math> denotes coefficient of determination in prediction. RMSEP denotes the root mean square error of prediction. RPD denotes the residual predictive deviation.</p> "> Figure 8
<p>Performance of soil Cu estimation model considering different numbers of spatial nearby samples. (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>R</mi> </mrow> <mrow> <mi>p</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </mrow> </semantics></math>, denotes coefficient of determination in prediction. (<b>b</b>) RMSEP, denotes the root mean square error of prediction. (<b>c</b>) RPD, denotes the residual predictive deviation. The dotted blue line is the fitting line.</p> "> Figure 9
<p>Performance of soil Cu estimation model when the number of spatial nearby samples is 125. <math display="inline"><semantics> <mrow> <msubsup> <mrow> <mi>R</mi> </mrow> <mrow> <mi>p</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msubsup> </mrow> </semantics></math> denotes coefficient of determination in prediction. RMSEP denotes the root mean square error of prediction. RPD denotes the residual predictive deviation. (<b>a</b>) The selected 125 nearby samples. (<b>b</b>) The performance of the Cu estimation model.</p> "> Figure 10
<p>Correlation between Cu concentration and spectral wavelengths from 350 to 2500 nm. The blue line denotes the Pearson correlation coefficient. The dotted line denotes the threshold for important wavelengths.</p> "> Figure 11
<p>Examples of spatially nearby samples and geographic subsets.</p> "> Figure 12
<p>The mean distance between validation and calibration samples when selecting different numbers of nearby samples.</p> "> Figure 13
<p>The mean distance (17 km) between the validation and calibration sample when selecting 125 nearby samples. The red circle has a radius of 17 km.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Spectral Measurement and Chemical Analysis
2.3. Spatially Nearby Samples
2.4. Model Calibration
2.5. Model Performance
3. Results
3.1. Descriptive Statistics of Soil Samples
3.2. Estimation Performance of Cu Models without Considering Spatially Nearby Samples
3.3. Estimation Performance of Cu Models with Spatially Nearby Samples
4. Discussion
4.1. Estimation of Soil Cu Content in Urban Land by Vis-NIR Spectroscopy
4.2. The Influence of Spatially Nearby Samples on Soil Cu Estimation Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.R.; van der Heijden, M.G.A.; Riedo, J.; Sanz-Lazaro, C.; Eldridge, D.J.; Bastida, F.; Moreno-Jiménez, E.; Zhou, X.-Q.; Hu, H.-W.; He, J.-Z.; et al. Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide. Nat. Commun. 2023, 14, 1706. [Google Scholar] [CrossRef]
- Schmidt-Traub, G.; Kroll, C.; Teksoz, K.; Durand-Delacre, D.; Sachs, J.D. National baselines for the Sustainable Development Goals assessed in the SDG Index and Dashboards. Nat. Geosci. 2017, 10, 547. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.; Sparks, D.L.; Yamauchi, Y.; Rinklebe, J.; Ok, Y.S. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.X.; Shaheen, S.M.; Rinklebe, J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef]
- Luo, X.S.; Xue, Y.; Wang, Y.L.; Cang, L.; Xu, B.; Ding, J. Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere 2015, 127, 152–157. [Google Scholar] [CrossRef]
- O’Riordan, R.; Davies, J.; Stevens, C.; Quinton, J.N.; Boyko, C. The ecosystem services of urban soils: A review. Geoderma 2021, 395, 115076. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- Cheng, H.; Shen, R.; Chen, Y.; Wan, Q.; Shi, T.; Wang, J.; Wan, Y.; Hong, Y.; Li, X. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma 2019, 336, 59–67. [Google Scholar] [CrossRef]
- Hong, Y.; Shen, R.; Cheng, H.; Chen, S.; Chen, Y.; Guo, L.; He, J.; Liu, Y.; Yu, L.; Liu, Y. Cadmium concentration estimation in peri-urban agricultural soils: Using reflectance spectroscopy, soil auxiliary information, or a combination of both? Geoderma 2019, 354, 113875. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Z.; Yuan, X.; Browne, P.; Chen, L.; Ji, J. The influences of soil properties on Cu and Zn availability in soil and their transfer to wheat t (Triticum aestivum L.) in the Yangtze River delta region, China. Geoderma 2013, 193, 131–139. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.; Demattê, J.; Shepherd, K.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef]
- Li, S.; Viscarra Rossel, R.A.; Webster, R. The cost-effectiveness of reflectance spectroscopy for estimating soil organic carbon. Eur. J. Soil Sci. 2022, 73, e13202. [Google Scholar] [CrossRef]
- Ji, W.; Li, S.; Chen, S.; Shi, Z.; Viscarra Rossel, R.A.; Mouazen, A.M. Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions. Soil Tillage Res. 2016, 155, 492–500. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Borůvka, L.; Saberioon, M.M.; Kozák, J.; Vašát, R.; Němeček, K. Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features. Soil Water Res. 2015, 10, 218–227. [Google Scholar] [CrossRef]
- Khosravi, V.; Ardejani, F.D.; Aryafar, A.; Yousefi, S.; Karami, S. Prediction of copper content in waste dump of Sarcheshmeh copper mine using visible and near-infrared reflectance spectroscopy. Environ. Earth Sci. 2020, 79, 165. [Google Scholar] [CrossRef]
- Krzebietke, S.; Daszykowski, M.; Czarnik-Matusewicz, H.; Stanimirova, I.; Pieszczek, L.; Sienkiewicz, S.; Wierzbowska, J. Monitoring the concentrations of Cd, Cu, Pb, Ni, Cr, Zn, Mn and Fe in cultivated Haplic Luvisol soils using near-infrared reflectance spectroscopy and chemometrics. Talanta 2023, 251, 123749. [Google Scholar] [CrossRef]
- Shi, T.; Liu, H.; Wang, J.; Chen, Y.; Fei, T.; Wu, G. Monitoring arsenic contamination in agricultural soils with reflectance spectroscopy of rice plants. Environ. Sci. Technol. 2014, 48, 6264–6272. [Google Scholar] [CrossRef]
- Xu, D.Y.; Chen, S.C.; Xu, H.Y.; Wang, N.; Zhou, Y.; Shi, Z. Data fusion for the measurement of potentially toxic elements in soil using portable spectrometers. Environ. Pollut. 2020, 263, 114649. [Google Scholar] [CrossRef]
- Wang, J.Z.; Hu, X.J.; Shi, T.Z.; He, L.; Hu, W.F.; Wu, G.F. Assessing toxic metal chromium in the soil in coal mining areas via proximal sensing: Prerequisites for land rehabilitation and sustainable development. Geoderma 2022, 405, 115399. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, T.; Lan, Z.; Guo, K.; Zhuang, D.; Zhang, X.; Liang, X.; Qiu, T.; Zhang, S.; Chen, Y. Estimating the Soil Copper Content of Urban Land in a Megacity Using Piecewise Spectral Pretreatment. Land 2024, 13, 517. [Google Scholar] [CrossRef]
- Horta, A.; Malone, B.; Stockmann, U.; Minasny, B.; Bishop, T.F.A.; McBratney, A.B.; Pallasser, R.; Pozza, L. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma 2015, 241, 180–209. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Z.; Zhang, G.; Chen, Y.; Li, S.; Hong, Y.; Shi, T.; Wang, J.; Liu, Y. Application of Spectrally Derived Soil Type as Ancillary Data to Improve the Estimation of Soil Organic Carbon by Using the Chinese Soil Vis-NIR Spectral Library. Remote Sens. 2018, 10, 1747. [Google Scholar] [CrossRef]
- Bao, Y.L.; Meng, X.T.; Ustin, S.; Wang, X.; Zhang, X.L.; Liu, H.J.; Tang, H.T. Vis-SWIR spectral prediction model for soil organic matter with different grouping strategies. Catena 2020, 195, 104703. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Keramaris, K.D.; Theocharis, J.B.; Zalidis, G.C. Simultaneous prediction of soil properties from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network. Geoderma 2020, 367, 114208. [Google Scholar] [CrossRef]
- Chen, S.; Arrouays, D.; Mulder, V.L.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.; Hannam, J.; et al. Digital mapping of GlobalSoilMap soil properties at a broad scale: A review. Geoderma 2022, 409, 115567. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Shen, Z.F.; Lopez, L.R.; Behrens, T.; Shi, Z.; Wetterlind, J.; Sudduth, K.A.; Stenberg, B.; Guerrero, C.; Gholizadeh, A.; et al. An imperative for soil spectroscopic modelling is to think global but fit local with transfer learning. Earth-Sci. Rev. 2024, 254, 104797. [Google Scholar] [CrossRef]
- Song, J.H.; Shi, X.Y.; Wang, H.J.; Lv, X.; Zhang, W.X.; Wang, J.G.; Li, T.S.; Li, W.D. Combination of feature selection and geographical stratification increases the soil total nitrogen estimation accuracy based on vis-NIR and pXRF spectral fusion. Comput. Electron. Agric. 2024, 218, 108636. [Google Scholar] [CrossRef]
- Khosravi, V.; Gholizadeh, A.; Zizala, D.; Kodesová, R.; Saberioon, M.; Agyeman, P.C.; Vokurková, P.; Juricová, A.; Spasic, M.; Boruvka, L. On the impact of soil texture on local scale organic carbon quantification: From airborne to spaceborne sensing domains. Soil Tillage Res. 2024, 241, 106125. [Google Scholar] [CrossRef]
- Hong, Y.S.; Chen, Y.Y.; Chen, S.C.; Shen, R.L.; Guo, L.; Liu, Y.L.; Mouazen, A.M.; Shi, Z. Improving spectral estimation of soil inorganic carbon in urban and suburban areas by coupling continuous wavelet transform with geographical stratification. Geoderma 2023, 430, 116284. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Toth, G.; Panagos, P.; van Wesemael, B.; Montanarella, L. Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a local partial least square regression approach. Soil Biol. Biochem. 2014, 68, 337–347. [Google Scholar] [CrossRef]
- Tziolas, N.; Tsakiridis, N.; Ben-Dor, E.; Theocharis, J.; Zalidis, G. A memory-based learning approach utilizing combined spectral sources and geographical proximity for improved VIS-NIR-SWIR soil properties estimation. Geoderma 2019, 340, 11–24. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, T.; Chen, Y.; Lan, Z.; Guo, K.; Zhuang, D.; Yang, C.; Zhang, W. Monitoring the Soil Copper of Urban Land with Visible and Near-Infrared Spectroscopy: Comparing Spectral, Compositional, and Spatial Similarities. Land 2024, 13, 1279. [Google Scholar] [CrossRef]
- Peng, Y.; Knadel, M.; Gislum, R.; Deng, F.; Norgaard, T.; de Jonge, L.W.; Moldrup, P.; Greve, M.H. Predicting soil organic carbon at field scale using a national soil spectral library. J. Near Infrared Spectrosc. 2013, 21, 213–222. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Webster, R. Predicting soil properties from the Australian soil visible-near infrared spectroscopic database. Eur. J. Soil Sci. 2012, 63, 848–860. [Google Scholar] [CrossRef]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar] [CrossRef]
- Shi, Z.; Ji, W.; Viscarra Rossel, R.A.; Chen, S.; Zhou, Y. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis–NIR spectral library. Eur. J. Soil Sci. 2015, 66, 679–687. [Google Scholar] [CrossRef]
- Vohland, M.; Ludwig, B.; Seidel, M.; Hutengs, C. Quantification of soil organic carbon at regional scale: Benefits of fusing vis-NIR and MIR diffuse reflectance data are greater for in situ than for laboratory-based modelling approaches. Geoderma 2022, 405, 115426. [Google Scholar] [CrossRef]
- Ramirez-Lopez, L.; Behrens, T.; Schmidt, K.; Stevens, A.; Demattê, J.A.M.; Scholten, T. The spectrum-based learner: A new local approach for modeling soil vis–NIR spectra of complex datasets. Geoderma 2013, 195, 268–279. [Google Scholar] [CrossRef]
- Guo, L.; Zhao, C.; Zhang, H.; Chen, Y.; Linderman, M.; Zhang, Q.; Liu, Y. Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology. Geoderma 2017, 285, 280–292. [Google Scholar] [CrossRef]
- Summerauer, L.; Baumann, P.; Ramirez-Lopez, L.; Barthel, M.; Bauters, M.; Bukombe, B.; Reichenbach, M.; Boeckx, P.; Kearsley, E.; Van Oost, K.; et al. The central African soil spectral library: A new soil infrared repository and a geographical prediction analysis. Soil 2021, 7, 693–715. [Google Scholar] [CrossRef]
- Dorantes, M.J.; Fuentes, B.A.; Miller, D.M. Calibration set optimization and library transfer for soil carbon estimation using soil spectroscopy—A review. Soil Sci. Soc. Am. J. 2022, 86, 879–903. [Google Scholar] [CrossRef]
- Shi, T.; Hu, Z.; Shi, Z.; Guo, L.; Chen, Y.; Li, Q.; Wu, G. Geo-detection of factors controlling spatial patterns of heavy metals in urban topsoil using multi-source data. Sci. Total Environ. 2018, 643, 451–459. [Google Scholar] [CrossRef]
- Duan, D.Y.; Wang, P.; Rao, X.; Zhong, J.H.; Xiao, M.H.; Huang, F.; Xiao, R.B. Identifying interactive effects of spatial drivers in soil heavy metal pollutants using interpretable machine learning models. Sci. Total Environ. 2024, 934, 173284. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Zhao, S.H.; Xi, X.P.; Yang, K.; Luo, F. Environmental Background Values of Heavy Metals and Physicochemical Properties in Different Soils in Shenzhen. Environ. Sci. 2021, 42, 3518–3526. [Google Scholar]
- Zhang, W.; Xu, A.; Zhang, R.; Ji, H. Review of Soil Classification and Revision of China Soil Classification System. Sci. Agric. Sin. 2014, 47, 3214–3230. [Google Scholar]
- Shi, T.Z.; Cui, L.J.; Wang, J.J.; Fei, T.; Chen, Y.Y.; Wu, G.F. Comparison of multivariate methods for estimating soil total nitrogen with visible/near-infrared spectroscopy. Plant Soil 2013, 366, 363–375. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Chen, Y.Y.; Wu, K.X.; Hong, Y.S.; Shi, T.Z.; Mouazen, A.M. On the parsimony, interpretability and predictive capability of a physically-based model in the optical domain for estimating soil moisture content. Geoderma 2024, 449, 116996. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper1. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Mancini, M.; Andrade, R.; Silva, S.H.G.; Rafael, R.B.A.; Mukhopadhyay, S.; Li, B.; Chakraborty, S.; Guilherme, L.R.G.; Acree, A.; Weindorf, D.C.; et al. Multinational prediction of soil organic carbon and texture via proximal sensors. Soil Sci. Soc. Am. J. 2024, 88, 8–26. [Google Scholar] [CrossRef]
- Hu, B.F.; Ni, H.J.; Xie, M.D.; Li, H.Y.; Wen, Y.L.; Chen, S.C.; Zhou, Y.; Teng, H.F.; Bourennane, H.; Shi, Z. Mapping soil organic matter and identifying potential controls in the farmland of Southern China: Integration of multi-source data, machine learning and geostatistics. Land Degrad. Dev. 2023, 34, 5468–5485. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, B.; Su, Y.; Zhang, D.; Wang, Y.; Bian, Y.; Suo, L.; Guo, X.; Bai, H. Retrieving zinc concentrations in topsoil with reflectance spectroscopy at Opencast Coal Mine sites. Sci. Rep. 2021, 11, 19909. [Google Scholar] [CrossRef]
- Karami, A.; Moosavi, A.A.; Pourghasemi, H.R.; Ronaghi, A.; Ghasemi-Fasaei, R.; Vidal, E.; Lado, M. Proximal sensing approach for characterization of calcareous soils using multiblock data analysis. Geoderma Reg. 2024, 36, e00752. [Google Scholar] [CrossRef]
- Zhou, M.; Hu, T.; Wu, M.T.; Ma, C.D.; Qi, C.C. Rapid estimation of soil Mn content by machine learning and soil spectra in large-scale. Ecol. Inform. 2024, 81, 102615. [Google Scholar] [CrossRef]
- Gozukara, G.; Acar, M.; Ozlu, E.; Dengiz, O.; Hartemink, A.E.; Zhang, Y. A soil quality index using Vis-NIR and pXRF spectra of a soil profile. Catena 2022, 211, 105954. [Google Scholar] [CrossRef]
- Nawar, S.; Mohamed, E.S.; Sayed, S.E.E.; Mohamed, W.S.; Rebouh, N.Y.; Hammam, A.A. Estimation of key potentially toxic elements in arid agricultural soils using Vis-NIR spectroscopy with variable selection and PLSR algorithms. Front. Environ. Sci. 2023, 11, 1222871. [Google Scholar] [CrossRef]
- Riedel, F.; Denk, M.; Müller, I.; Barth, N.; Glässer, C. Prediction of soil parameters using the spectral range between 350 and 15,000 nm: A case study based on the Permanent Soil Monitoring Program in Saxony, Germany. Geoderma 2018, 315, 188–198. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Li, S.; Shi, Z.; Chen, S.; Ji, W.; Zhou, L.; Yu, W.; Webster, R. In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai–Tibet plateau. Environ. Sci. Technol. 2015, 49, 4980–4987. [Google Scholar] [CrossRef]
- Shi, T.; Chen, Y.; Liu, Y.; Wu, G. Visible and near-infrared reflectance spectroscopy—An alternative for monitoring soil contamination by heavy metals. J. Hazard. Mater. 2014, 265, 166–176. [Google Scholar] [CrossRef]
- Li, J.K.; Xu, H.; Song, Y.P.; Tang, L.L.; Gong, Y.B.; Yu, R.L.; Shen, L.; Wu, X.L.; Liu, Y.D.; Zeng, W.M. Geography Plays a More Important Role than Soil Composition on Structuring Genetic Variation of Pseudometallophyte Commelina communis. Front. Plant Sci. 2016, 7, 1085. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, S.C.; Lu, R.; Zhang, X.L.; Ma, Y.X.; Shi, Z. Non-linear memory-based learning for predicting soil properties using a regional vis-NIR spectral library. Geoderma 2024, 441, 116752. [Google Scholar] [CrossRef]
- McDowell, M.L.; Bruland, G.L.; Deenik, J.L.; Grunwald, S. Effects of subsetting by carbon content, soil order, and spectral classification on prediction of soil total carbon with diffuse reflectance spectroscopy. Appl. Environ. Soil Sci. 2012, 2012, 294121. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Harris, W.G. Spectroscopic models of soil organic carbon in Florida, USA. J. Environ. Qual. 2010, 39, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Shi, X.; Wang, M.; Zhao, Y. Effects of subsetting by parent materials on prediction of soil organic matter content in a hilly area using Vis–NIR spectroscopy. PLoS ONE 2016, 11, e0151536. [Google Scholar] [CrossRef] [PubMed]
- Debaene, G.; Niedzwiecki, J.; Pecio, A.; Zurek, A. Effect of the number of calibration samples on the prediction of several soil properties at the farm-scale. Geoderma 2014, 214, 114–125. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, Y.; Zhang, Y.; Shi, T.; Wang, J.; Hong, Y.; Fei, T. The Influence of Spectral Pretreatment on the Selection of Representative Calibration Samples for Soil Organic Matter Estimation Using Vis-NIR Reflectance Spectroscopy. Remote Sens. 2019, 11, 450. [Google Scholar] [CrossRef]
- Ettema, C.H.; Wardle, D.A. Spatial soil ecology. Trends Ecol. Evol. 2002, 17, 177–183. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Y.; Wang, J.; Wang, B.; Yu, P.; Hong, Y.; Zhu, L. Unveiling the explanatory power of environmental variables in soil organic carbon mapping: A global–local analysis framework. Geoderma 2024, 449, 117011. [Google Scholar] [CrossRef]
Sample | Number | Cu (mg·kg−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Median | Mean | Std 1 | CV 2 | Skewness | Kurtosis | Background | Pollution Level | ||
Total | 250 | 20.45 | 103.24 | 59.44 | 58.29 | 15.57 | 0.27 | 0.13 | 0.12 | 17.00 | 36.00 |
Calibration | 200 | 20.45 | 103.24 | 59.44 | 58.29 | 15.60 | 0.27 | 0.13 | 0.15 | ||
Validation | 50 | 25.21 | 97.06 | 59.18 | 58.30 | 15.63 | 0.27 | 0.13 | 0.12 |
Number of Nearby Samples | Calibration | Validation | |||
---|---|---|---|---|---|
RMSEP | RPD | ||||
None | 0.64 | 9.72 | 0.75 | 8.56 | 1.83 |
20 | - | - | 0.75 | 7.75 | 2.01 |
50 | - | - | 0.90 | 4.90 | 3.14 |
100 | - | - | 0.92 | 4.56 | 3.43 |
150 | - | - | 0.93 | 4.00 | 3.90 |
200 | - | - | 0.92 | 4.34 | 3.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Shi, T.; Lan, Z.; Guo, K.; Yang, C.; Chen, Y. Monitoring Soil Copper in Urban Land Using Visibale and Near-Infrared Spectroscopy with Spatially Nearby Samples. Sensors 2024, 24, 5612. https://doi.org/10.3390/s24175612
Liu Y, Shi T, Lan Z, Guo K, Yang C, Chen Y. Monitoring Soil Copper in Urban Land Using Visibale and Near-Infrared Spectroscopy with Spatially Nearby Samples. Sensors. 2024; 24(17):5612. https://doi.org/10.3390/s24175612
Chicago/Turabian StyleLiu, Yi, Tiezhu Shi, Zeying Lan, Kai Guo, Chao Yang, and Yiyun Chen. 2024. "Monitoring Soil Copper in Urban Land Using Visibale and Near-Infrared Spectroscopy with Spatially Nearby Samples" Sensors 24, no. 17: 5612. https://doi.org/10.3390/s24175612
APA StyleLiu, Y., Shi, T., Lan, Z., Guo, K., Yang, C., & Chen, Y. (2024). Monitoring Soil Copper in Urban Land Using Visibale and Near-Infrared Spectroscopy with Spatially Nearby Samples. Sensors, 24(17), 5612. https://doi.org/10.3390/s24175612