Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System
<p>The structure of the UAV-borne crop-growth monitoring system.</p> "> Figure 2
<p>The DJI phantom UAV platform.</p> "> Figure 3
<p>Measurement principles of the multispectral crop-growth sensor. Note: Sensor 1 and sensor 2 represent the solar sensor and two-band sensor, respectively.</p> "> Figure 4
<p>The lightweight structure used for the multispectral crop growth sensor.</p> "> Figure 5
<p>3D models used for the DJI phantom UAV. (<b>a</b>) Rotor blade; (<b>b</b>) UAV.</p> "> Figure 6
<p>The grid divisions of the flow fields. (<b>a</b>) Grid division of the outer flow field; (<b>b</b>) Grid division of the inner flow field.</p> "> Figure 6 Cont.
<p>The grid divisions of the flow fields. (<b>a</b>) Grid division of the outer flow field; (<b>b</b>) Grid division of the inner flow field.</p> "> Figure 7
<p>Velocity vector distribution for the down-wash flow fields on the <span class="html-italic">Z</span>-<span class="html-italic">Y</span> section.</p> "> Figure 8
<p>Air velocities in given horizontal planes below the rotors. (<b>a</b>) 0.4 m; (<b>b</b>) 0.6 m; (<b>c</b>) 0.8 m; (<b>d</b>) 1.0 m; (<b>e</b>) 1.2 m.</p> "> Figure 8 Cont.
<p>Air velocities in given horizontal planes below the rotors. (<b>a</b>) 0.4 m; (<b>b</b>) 0.6 m; (<b>c</b>) 0.8 m; (<b>d</b>) 1.0 m; (<b>e</b>) 1.2 m.</p> "> Figure 9
<p>The UAV-borne crop-growth sensor. (<b>a</b>) Installation of sensor support; (<b>b</b>) Two-band sensor.</p> "> Figure 10
<p>Principles used in the sensor signal processing circuit.</p> "> Figure 11
<p>The overall connection structure of the hardware system.</p> "> Figure 12
<p>Field tests based on UAV-borne crop-growth monitoring system.</p> "> Figure 13
<p>NDVI values measured using the hand-held sensor at different elevations. (<b>a</b>) Tillering stage; (<b>b</b>) Jointing stage; (<b>c</b>) Deviation coefficients of the NDVI values measured.</p> "> Figure 13 Cont.
<p>NDVI values measured using the hand-held sensor at different elevations. (<b>a</b>) Tillering stage; (<b>b</b>) Jointing stage; (<b>c</b>) Deviation coefficients of the NDVI values measured.</p> "> Figure 14
<p>Fitting curves for the hand-held sensor and ASD data. (<b>a</b>) NDVI; (<b>b</b>) RVI.</p> "> Figure 15
<p>NDVI values measured using the sensor fixed onto the UAV for different elevations. (<b>a</b>) Jointing stage; (<b>b</b>) Booting stage; (<b>c</b>) Heading stage; (<b>d</b>) Deviation coefficients of the NDVI values measured.</p> "> Figure 15 Cont.
<p>NDVI values measured using the sensor fixed onto the UAV for different elevations. (<b>a</b>) Jointing stage; (<b>b</b>) Booting stage; (<b>c</b>) Heading stage; (<b>d</b>) Deviation coefficients of the NDVI values measured.</p> "> Figure 16
<p>Fitting curves for the UAV-borne sensor and ASD data. (<b>a</b>) NDVI; (<b>b</b>) RVI.</p> "> Figure 17
<p>The spectral model for the UAV-borne crop-growth monitoring system. (<b>a</b>) LNA-RVI/NDVI fitting curve; (<b>b</b>) LAI–RVI/NDVI fitting curve; (<b>c</b>) LDW–RVI/NDVI fitting curve.</p> "> Figure 17 Cont.
<p>The spectral model for the UAV-borne crop-growth monitoring system. (<b>a</b>) LNA-RVI/NDVI fitting curve; (<b>b</b>) LAI–RVI/NDVI fitting curve; (<b>c</b>) LDW–RVI/NDVI fitting curve.</p> "> Figure 17 Cont.
<p>The spectral model for the UAV-borne crop-growth monitoring system. (<b>a</b>) LNA-RVI/NDVI fitting curve; (<b>b</b>) LAI–RVI/NDVI fitting curve; (<b>c</b>) LDW–RVI/NDVI fitting curve.</p> ">
Abstract
:1. Introduction
2. Design of the UAV-Borne Crop-Growth Monitoring System
2.1. Overall Design of the System
2.2. Optimization of the UAV Platform
2.3. UAV-Borne Crop-Growth Sensor
2.3.1. Multispectral Crop-Growth Sensor
2.3.2. Design of the Sensor Support
Model Establishment
Numerical Simulations
Calculation Results and Analysis
2.3.3. Sensor Signal Processing Circuit
2.4. Ground-Based Data Processor
2.4.1. Hardware System
2.4.2. Software System
3. Tests and Analysis of Results
3.1. Test Design
3.2. Test Methods
3.2.1. UAV-Borne Crop-Growth Sensor Measurements at Different Elevations
3.2.2. Performance Tests
3.3. Data Analysis
3.4. Results and Discussion
3.4.1. Elevation Test Results
3.4.2. Performance Test Results for the UAV-Borne Monitoring System
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lee, Y.; Yang, C.; Chang, K.; Shen, Y. A Simple Spectral Index Using Reflectance of 735 nm to Assess Nitrogen Status of Rice Canopy. Agron. J. 2008, 100, 205–212. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, X.; Tian, Y.; Liu, X.; Cao, W. Analysis of Common Canopy Vegetation Indices for Indicating Leaf Nitrogen Accumulations in Wheat and Rice. Int. J. Appl. Earth Obs. Geoinform. 2008, 10, 1–10. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, C.-J.; Wang, X.; Chen, L. Research Advancement and Status on Crop Nitrogen Nutrition Diagnosis. Soil Fertil. Sci. China 2008, 4, 10–14. [Google Scholar]
- Gnyp, M.L.; Miao, Y.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.; Huang, S.; Bareth, G. Hyperspectral Canopy Sensing of Paddy Rice aboveground Biomass at Different Growth Stages. Field Crops Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Chen, X.; Schmidhalter, U. Optimising Three-Band Spectral Indices to Assess Aerial N Concentration, N Uptake and Aboveground Biomass of Winter Wheat Remotely in China and Germany. ISPRS J. Photogramm. Remote Sens. 2014, 92, 112–123. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Chen, X.; Schmidhalter, U. Reflectance Estimation of Canopy Nitrogen Content in Winter Wheat Using Optimised Hyperspectral Spectral Indices and Partial Least Squares Regression. Eur. J. Agron. 2014, 52, 198–209. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Use of a Virtual-Reference Concept to Interpret Active Crop Canopy Sensor Data. Precis. Agric. 2013, 14, 71–85. [Google Scholar] [CrossRef]
- Loubet, B.; Laville, P.; Lehuger, S.; Cellier, P. Carbon, Nitrogen and Greenhouse Gases Budgets over a Four Years Crop Rotation in Northern France. Plant Soil 2011, 343, 109–137. [Google Scholar] [CrossRef]
- Erdle, K.; Mistele, B.; Schmidhalter, U. Comparison of Active and Passive Spectral Sensors in Discriminating Biomass Parameters and Nitrogen Status in Wheat Cultivars. Field Crops Res. 2011, 124, 74–84. [Google Scholar] [CrossRef]
- Tow, P.; Cooper, I.; Partridge, I.; Birch, C. Using Conservation Agriculture and Precision Agriculture to Improve a Farming System. In Rainfed Farming Systems; Springer: Rotterdam, The Netherlands, 2011. [Google Scholar]
- Lang, M.; Kuusk, A.M.; Ttus, M.; Miina, R.; Nilson, T. Canopy Gap Fraction Estimation from Digital Hemispherical Images Using Sky Radiance Models and a Linear Conversion Method. Agric. For. Meteorol. 2010, 150, 20–29. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Y.; Qin, X.; Tian, Y.; Cao, W. Quantitative Relationship between Leaf Nitrogen Concentration and Canopy Reflectance Spectra in Rice and Wheat. Acta Ecol. Sin. 2006, 26, 3463–3469. [Google Scholar]
- Zheng, H.; Cheng, T.; Yao, X.; Deng, X.; Tian, Y.; Cao, W.; Zhu, Y. Detection of rice phenology through time series analysis of ground-based spectral index data. Field Crops Res. 2016, 198, 131–139. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M.; Zhang, Y. The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecol. Complex. 2013, 17, 119–130. [Google Scholar] [CrossRef]
- Ali, A.M.; Thind, H.S.; Sharma, S.; Varinderpal-Singh. Prediction of Dry Direct-Seeded Rice Yields Using Chlorophyll Meter, Leaf Colour Chart and Greenseeker Optical Sensor in Northwestern India. Field Crops Res. 2014, 16, 11–15. [Google Scholar] [CrossRef]
- Walsh, O.S.; Klatt, A.R.; Solie, J.B.; Godsey, C.B.; Raun, W.R. Use of Soil Moisture Data for Refined Greenseeker Sensor Based Nitrogen Recommendations in Winter Wheat. Precis. Agric. 2013, 14, 343–356. [Google Scholar] [CrossRef]
- Lamb, D.W.; Trotter, M.G.; Schneider, D.A. Ultra Low-Level Airborne (ULLA) Sensing of Crop Canopy Reflectance: A Case Study Using a Cropcircle™ Sensor. Comput. Electron. Agric. 2009, 69, 86–91. [Google Scholar] [CrossRef]
- Mayfield, A.H.; Trengove, S.P. Grain yield and protein responses in wheat using the n-sensor for variable rate n application. Crop Pasture Sci. 2009, 60, 818–823. [Google Scholar] [CrossRef]
- Link, A.; Panitzki, M.; Reusch, S.; Robert, P.C. In Hydro n-sensor: Tractor-mounted remote sensing for variable nitrogen fertilization. In Proceedings of the International Conference on Precision Agriculture and Other Precision Resources Management, Minneapolis, MN, USA, 14–17 July 2003.
- Reusch, S.; Jasper, J.; Link, A. Estimating Crop Biomass And Nitrogen Uptake Using Cropspectm, a Newly Developed Active Crop-Canopy Reflectance Sensor. In Proceedings of the International Conference on Precision Agriculture, Denver, CO, USA, 18–21 July 2010.
- Thomason, W.E.; Phillips, S.B.; Davis, P.H.; Warren, J.G.; Alley, M.M.; Reiter, M.S. Variable nitrogen rate determination from plant spectral reflectance in soft red winter wheat. Precis. Agric. 2011, 12, 666–681. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Ma, W.; Li, M.Z. Variable-rate fertilizing for winter wheat based on canopy spectral reflectance. J. Jilin Univ. 2007, 37, 1455–1459. [Google Scholar]
- Freeman, P.K.; Freeland, R.S. Agricultural UAVs in the U.S.: Potential, policy, and hype. Remote Sens. Appl.: Soc. Environ. 2015, 2, 35–43. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a uav platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinform. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Rasmussen, J.; Ntakos, G.; Nielsen, J.; Svensgaard, J.; Poulsen, R.N.; Christensen, S. Are vegetation indices derived from consumer-grade cameras mounted on uavs sufficiently reliable for assessing experimental plots? Eur. J. Agron. 2016, 74, 75–92. [Google Scholar] [CrossRef]
- Caturegli, L.; Corniglia, M.; Gaetani, M.; Grossi, N.; Magni, S.; Migliazzi, M.; Angelini, L.; Mazzoncini, M.; Silvestri, N.; Fontanelli, M. Unmanned aerial vehicle to estimate nitrogen status of turfgrasses. PLoS ONE 2016, 11, e0158268. [Google Scholar] [CrossRef] [PubMed]
- Lin, G. Soybean leaf area index retrieval with UAV (unmanned aerial vehicle) remote sensing imagery. Chin. J. Eco-Agric. 2015, 7, 868–876. [Google Scholar]
- Ghazal, M.; Khalil, Y.A.; Hajjdiab, H. UAV-based remote sensing for vegetation cover estimation using NDVI imagery and level sets method. IEEE Int. Symp. Signal Process. Inf. Technol. 2015, 12, 332–337. [Google Scholar]
- Tian, Z.; Fu, Y.; Liu, S.; Liu, F. Rapid crops classification based on UAV low-altitude remote sensing. Trans. Chin. Soc. Agric. Eng. 2013, 7, 109–116. [Google Scholar]
- Ni, J.; Xia, Y.; Tian, Y.; Cao, W.; Yan, Z. Design and experiments of portable apparatus for plant growth monitoring and diagnosis. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2013, 29, 150–156. [Google Scholar]
- Ni, J.; Dong, J.; Zhang, J.; Cao, W.; Yan, Z. The spectral calibration method for a crop nitrogen sensor. Sens. Rev. 2016, 36, 48–56. [Google Scholar] [CrossRef]
- Ni, J.; Jiang, Q.; Xu, Z.; Cao, W.; Zhu, Y. The Optical System Calibration of the Crop Nitrogen Sensor. Int. J. Control Autom. 2015, 8, 263–274. [Google Scholar] [CrossRef]
- Ni, J.; Wang, T.; Yao, X.; Cao, W.; Zhu, Y. Design and experiments of multi-spectral sensor for rice and wheat growth information. Trans. Chin. Soc. Agric. Mach. 2013, 44, 207–212. [Google Scholar]
- Zou, X.; He, Q.; He, J. Current development and related technologies of UAV. Aerodyn. Missile J. 2006, 10, 9–14. [Google Scholar]
- Jin, W.; Ge, H.; Du, H.; Xu, X. A review on unmanned aerial vehicle remote sensing and its application. Remote Sens. Inf. 2009, 1, 88–89. [Google Scholar]
- Panagiotou, P.; Tsavlidis, I.; Yakinthos, K. Conceptual design of a hybrid solar male UAV. Aerosp. Sci. Technol. 2016, 53, 207–219. [Google Scholar] [CrossRef]
- Panagiotou, P.; Kaparos, P.; Yakinthos, K. Winglet design and optimization for a male UAV using CFD. Aerosp. Sci. Technol. 2014, 39, 190–205. [Google Scholar] [CrossRef]
- Hubvert, P.; Siegfried, W. Navier-Stokes analysis of helicopter rotor aerodynamics in hover and forward flight. J. Air Craft 2002, 39, 813–821. [Google Scholar]
- Wang, F. Computational Fluid Dynamics Analysis-Principle and Application of CFD Software; Tsinghua University Press: Beijing, China, 2004; p. 125. [Google Scholar]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, J.; Yao, L.; Zhang, J.; Cao, W.; Zhu, Y.; Tai, X. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System. Sensors 2017, 17, 502. https://doi.org/10.3390/s17030502
Ni J, Yao L, Zhang J, Cao W, Zhu Y, Tai X. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System. Sensors. 2017; 17(3):502. https://doi.org/10.3390/s17030502
Chicago/Turabian StyleNi, Jun, Lili Yao, Jingchao Zhang, Weixing Cao, Yan Zhu, and Xiuxiang Tai. 2017. "Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System" Sensors 17, no. 3: 502. https://doi.org/10.3390/s17030502
APA StyleNi, J., Yao, L., Zhang, J., Cao, W., Zhu, Y., & Tai, X. (2017). Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System. Sensors, 17(3), 502. https://doi.org/10.3390/s17030502